Skip to main content
Log in

Silver and gold films and fibers several nanometers thick: Very slow optical surface plasmons

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

On films and fibers of well-reflecting metals (silver, gold) several nanometers thick, surface plasmons could be slowed down by 10 to 40 times. The plasmons are additionally slowed down when the nanofilms (nanofibers) are placed into a medium with a dielectric constant that is approximately equal to but still smaller than the modulus of the negative dielectric constant of the metal. As the result, the optical frequency waves prove to have wavelengths of ∼4 nm, i.e., as in soft x-ray. The propagation losses of these waves are moderately high. We propose to develop the optics (the optical transformations — deviation, focusing, photonic crystals, etc.) of these waves on thin metal layers integrated into nanodevices. In particular, we calculated the probability of spontaneous emission of a photon by an atom (molecule) into the surface plasmon of a nanoparticle. This probability proved to be increased by many orders of magnitude. This work interprets experiments that show a higher (14 orders of magnitude and more) probability of spontaneous Raman scattering of a molecule on the surface of a silver nanoparticle. The molecule is in the field of a surface plasmon, owing to which the local field and density of states of the field prove to be increased to such an extent as to give a rise of 12 or 13 orders of magnitude. An additional increase by one or two orders of magnitude is due to the antenna effect of a pair of nanoparticles, one of which is extremely small and the other is sufficiently large to serve as an efficient transceiver antenna. The possibility of developing sources of light pulses of exceptionally short duration arises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Failache, S. Saltiel, A. Ficher, et al., Phys. Rev. Lett., 88, 243603 (2002).

  2. M. Schubert, T. E. Tiwald, and C. M. Herzinger, Phys. Rev. B, 61, 8187 (2000).

    Article  ADS  Google Scholar 

  3. H. Raether, Surface Plasmons, Springer, Berlin (1988).

    Google Scholar 

  4. G. J. Kovacs and G. D. Scott, Phys. Rev. B, 16, 1297 (1977).

    Article  ADS  Google Scholar 

  5. E. Yablonovitch, “Plasmonics: Optical frequencies but with x-ray wavelengths,” Proc. 89th OSA Annual Meeting Frontiers in Optics 2005 & Laser Science XXI Conference, October 16–20, 2005, paper FWJ1.

  6. P. B. Johnson and R. W. Christy, Phys. Rev. B, 6, 4370 (1972).

    Article  ADS  Google Scholar 

  7. J. Seidel, S. Grafstroem, and L. Eng, Phys. Rev. Lett., 94, 177401 (2005).

    Google Scholar 

  8. K. Seal, A. K. Sarychev, H. Noh, et al., Phys. Rev. Lett., 94, 226101 (2005).

  9. S. V. Romanenko, V. A. Kagadei, E. V. Nefeyodtsev, and D. I. Proskurovsky, “Cleaning of Si and GaAs surface in the atomic hydrogen flow formed by the source based on low-pressure arc discharge,” Proc. 7th Int. Conf. on Modification of Materials with Particle Beams and Plasma Flows, Tomsk, Russia, July 25–29 (2004).

  10. J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York (1941).

    Google Scholar 

  11. W. Heitler, The Quantum Theory of Radiation, Oxford Univ. Press, London (1954).

    Google Scholar 

  12. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics, Pergamon Press, Oxford (1982).

    Google Scholar 

  13. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (2nd edn.), Pergamon Press, Oxford (1984).

    Google Scholar 

  14. V. S. Zuev, A. V. Frantsesson, D. V. Vlasov, and G. Ya. Zueva, Opt. Spektrosk., 96, 472 (2004).

    Article  Google Scholar 

  15. M. Ohtsu, K. Kobayashi, T. Kawazoe, et al., IEEE J. Sel. Top. Quantum Electron., 8, 839 (2002).

    Article  Google Scholar 

  16. W. H. A. Thijssen, D. Marjenburgh, R. H. Bremmer, and J. M. van Ruitenbeek, Phys. Rev. Lett., 96, 026806 (2006).

    Google Scholar 

  17. V. P. Bykov and G. V. Shepelev, Radiation of Atoms Near Macroscopic Bodies [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  18. E. Yablonovitch, Phys. Rev. Lett., 58, 2059 (1987).

    Article  ADS  Google Scholar 

  19. S. John, Phys. Rev. Lett., 58, 2486 (1987).

    Article  ADS  Google Scholar 

  20. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals. Molding the Flow of Light, Princeton Univ. Press, Princeton (1995).

    Google Scholar 

  21. K. Kneipp, Y. Wang, H. Kneipp, et al., Phys. Rev. Lett., 76, 2444 (1996).

    Article  ADS  Google Scholar 

  22. S. Nie and S. R. Emory, Science, 275, 1102 (1997).

    Article  Google Scholar 

  23. E. M. Purcell, Phys. Rev., 69, 681 (1946).

    Article  Google Scholar 

  24. V. S. Zuev and A. V. Frantsesson, Opt. Spektrosk., 93, 117 (2002).

    Article  Google Scholar 

  25. A. Neogi, Ch.-W. Lee, H. O. Everitt, et al., “Enhancement of spontaneous emission in a quantum well by resonant surface plasmon coupling,” arXiv:cond-mat/0204150, 1, April 5, 2002.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuev, V.S., Zueva, G.Y. Silver and gold films and fibers several nanometers thick: Very slow optical surface plasmons. J Russ Laser Res 27, 167–184 (2006). https://doi.org/10.1007/s10946-006-0007-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-006-0007-y

Keywords

Navigation