Advertisement

Outcome of the Psychological Intervention Program: Internet Use for Youth

  • Guek Nee KeEmail author
  • Siew Fan Wong
Article

Abstract

The prevalence of problematic Internet use (PIU) is reportedly higher in South East Asian adolescent populations. The exacerbation of problematic adolescent behaviors has been found to associate significantly with PIU and is expected to worsen with age. Cognitive Behavioural Therapy (CBT)-integrated therapy has been shown to significantly reduce in the presence of psychological symptoms such as depression and social anxiety. The Psychological Intervention Program-Internet Use for Youth (PIP-IU-Y) is a CBT-based program designed for adolescents and comprises of a series of interpersonal skills to improve their face-to-face interaction. It focuses on taking preventative measures against Internet addiction before it develops by addressing the participant’s PIU as a negative coping style and incorporating positive psychological techniques. A total of 157 participants between the ages of 13 and 18 completed the program which consisted of eight weekly, 90 min sessions in a group format. Treatment outcomes were measured using mean change at the end of the program and 1 month post-treatment. The majority of the participants showed improvement after the eight weekly sessions of PIP-IU-Y and continued symptom maintenance at the 1 month follow-up. An overwhelming majority of participants were able to manage PIU symptoms after the intervention program, reinforcing the efficacy of the PIP-IU-Y. Not only did it addresses the PIU behaviour but also helped in reducing social anxiety and increasing social interaction. Further research could investigate treatment differences among the various subtypes of PIU (e.g., online gaming and pornography) in order to see if treatment differences exist.

Keywords

Cognitive behavioral therapy Problematic internet users Preventive intervention program Positive psychology Internet addiction treatment Adolescents 

Notes

Acknowledgements

We gratefully acknowledge the financial support of the Malaysian Communications and Multimedia Commission (MCMC).

Funding

This study funded by Malaysian Communications and Multimedia Commission (MCMC). There is no funding code provided by the funding body.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abramowitz, J. S. (2013). The practice of exposure therapy: relevance of cognitive-behavioral theory and extinction theory. Behavior Therapy, 44(4), 548–558.  https://doi.org/10.1016/j.beth.2013.03.003.CrossRefPubMedGoogle Scholar
  2. Borckardt, J. J., Nash, M. R., Murphy, M. D., Moore, M., Shaw, D., & O’neil, P. (2008). Clinical practice as natural laboratory for psychotherapy research: A guide to case-based time-series analysis. American Psychologist, 63(2), 77.CrossRefPubMedGoogle Scholar
  3. Brace, N., Kemp, R., & Snelgar, R. (2016). SPSS for psychologists. Basingstoke: Palgrave.CrossRefGoogle Scholar
  4. Braun-Courville, D. K., & Rojas, M. (2009). Exposure to sexually explicit web sites and adolescent sexual attitudes and behaviors. Journal of Adolescent Health, 45(2), 156–162.  https://doi.org/10.1016/j.jadohealth.2008.12.004.CrossRefPubMedGoogle Scholar
  5. Brown, J. D., Keller, S., & Stern, S. (2009). Sex, sexuality, sexting, and sexed: Adolescents and the medi. The Prevention Researcher, 16(4), 12–16.Google Scholar
  6. Cao, H., Sun, Y., Wan, Y., Hao, J., & Tao, F. (2011). Problematic internet use in Chinese adolescents and its relation to psychosomatic symptoms and life satisfaction. BMC Public Health, 11(1), 802.  https://doi.org/10.1186/1471-2458-11-802.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Carson, C. (2012). The effective use of effect size indices in institutional research. Citováno dne, 11, 2016.Google Scholar
  8. Chen, Y.-L., & Gau, S. S.-F. (2016). Sleep problems and internet addiction among children and adolescents: A longitudinal study. Journal of Sleep Research, 25(4), 458–465.  https://doi.org/10.1111/jsr.12388.CrossRefPubMedGoogle Scholar
  9. Cheng, C., & Li, A. Y.-L. (2014). Internet addiction prevalence and quality of (real) life: A meta-analysis of 31 nations across seven world regions. Cyberpsychology, Behavior, and Social Networking, 17(12), 755–760.  https://doi.org/10.1089/cyber.2014.0317.CrossRefGoogle Scholar
  10. Cohen, J. (1988). Statistical analysis for the behavioral sciences. Hillsdale: Lawrance Erlbaum.Google Scholar
  11. Davis, R. A. (2001). A cognitive-behavioral model of pathological internet use. Computers in Human Behavior, 17, 187–195.CrossRefGoogle Scholar
  12. Davis, M., Eshelman, E. R., & McKay, M. (2008). The relaxation and stress reduction workbook (6th ed.). Oakland, CA: New Harbinger Publications.Google Scholar
  13. Do, Y. K., Shin, E., Bautistia, M. A., & Foo, K. (2013). The associations between self-reported sleep duration and adolescent health outcomes: What is the role of time spent on internet use? Sleep Medicine, 14(2), 195–200.  https://doi.org/10.1016/j.sleep.2012.09.004.CrossRefPubMedGoogle Scholar
  14. Du, Y.-S., Jiang, W., & Vance, A. (2010). Longer term effect of randomized, controlled group cognitive behavioural therapy for internet addiction in adolescent students in Shanghai. Australian and New Zealand Journal of Psychiatry, 44(2), 129–134.  https://doi.org/10.3109/00048670903282725.CrossRefPubMedGoogle Scholar
  15. Durkee, T., Kaess, M., Carli, V., Parzer, P., Wassermen, C., Floderus, B., et al. (2012). Prevalence of pathological internet use among adolescents in Europe: Demographic and social factors. Addiction, 107(12), 2210–2222.  https://doi.org/10.1111/j.1360-0443.2012.03946.x.CrossRefPubMedGoogle Scholar
  16. Eickhoff, E., Yung, K., Davis, D. L., Bishop, F., Klam, W. P., & Doan, A. P. (2015). Excessive video game use, sleep deprivation, and poor work performance among US Marines treated in a military mental health clinic: A case series. Military Medicine, 180(7), e839–e843.  https://doi.org/10.7205/milmed-d-14-00597.CrossRefPubMedGoogle Scholar
  17. Gilbert, P., & Leahy, R. L. (Eds.). (2007). The therapeutic relationship in cognitive behavioral pschotherapies. Abingdon: Routledge.Google Scholar
  18. Griffiths, M. D. (2000). Internet addiction—Time to be taken seriously? Addiction Research, 8(5), 413–418.  https://doi.org/10.3109/16066350009005587.CrossRefGoogle Scholar
  19. Griffiths, M. (2005). A ‘components’ model of addiction within a biopsychological framework. Journal of Substance Abuse, 10(4), 191–197.  https://doi.org/10.1080/14659890500114359.Google Scholar
  20. Gu, H. J., Lee, O. S., & Hong M. J. (2016). The relationship between SNS addiction tendency, self assertiveness, interpersonal problems and in college students. Journal of the Korea Academia-Industrial Cooperation Society, 17(4), 180–187.  https://doi.org/10.5762/KAIS.2016.17.4.180.CrossRefGoogle Scholar
  21. Ke, G., Wong, S., & Marsh, N. V. (2013). Problematic internet use among university students in Malaysia. Media Matters: Networked Media Content Research Report.Google Scholar
  22. Kelley, K., & Preacher, K. J. (2012). On effect size. Psychological Methods, 17(2), 137.CrossRefPubMedGoogle Scholar
  23. Kim, Y., Park, J. Y., Kim, S. B., Jung, I.-K., Lim, Y., & Kim, J.-H. (2010). The effects of internet addiction on the lifestyle and dietary behavior of Korean adolescents. Nutrition Research and Practice, 4(1), 51–57.  https://doi.org/10.4162/nrp.2010.4.1.51.CrossRefPubMedPubMedCentralGoogle Scholar
  24. King, D. L., Delfabbro, P. H., & Griffiths, M. D. (2010). Cognitive behavioral therapy for problematic video game players: Conceptual considerations and practice issues. Journal of CyberTherapy and Rehabilitation, 3(3), 261–373.Google Scholar
  25. Ko, C.-H., Liu, T.-L., Wang, P.-W., Chen, C.-S., Yen, C.-F., & Yen, J.-Y. (2014). The exacerbation of depression, hostility, and social anxiety in the course of internet addiction among adolescents: A prospective study. Comprehensive Psychiatry, 55(6), 1377–1384.  https://doi.org/10.1016/j.comppsych.2014.05.003.CrossRefPubMedGoogle Scholar
  26. Koronckzai, B., Urban, R., Kokonyei, G., Paksi, B., Papp, K., Kun, B., et al. (2011). Confirmation of the three-factor model of problematic internet use on off-line adolescent and adult samples. Cyberpsychology, Behavior, and Social Networking, 14(11), 657–664.  https://doi.org/10.1089/cyber.2010.0345.CrossRefGoogle Scholar
  27. Kuss, D. J. (2013). Internet gaming addiction: Current perspectives. Psychology Research and Behavior Management, 6, 125–137.  https://doi.org/10.2147/prbm.s39476.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kuss, D. J., & Griffiths, M. D. (2012). Internet gaming addiction: A systematic review. International Journal of Mental Health and Addiction.  https://doi.org/10.1007/s11469-011-9318-5.Google Scholar
  29. Li, W., O’Brien, J. E., Synder, S. M., & Howard, M. O. (2015). Characteristics of internet addiction/pathological internet use in US university students: A qualitative-method investigation. PLoS ONE.  https://doi.org/10.1371/journal.pone.0117372.Google Scholar
  30. Li, H., & Wang, S. (2013). The role of cognitive distortion in online game addiction among Chinese adolescents. Children and Youth Services Review, 35, 1468–1475.  https://doi.org/10.1016/j.childyouth.2013.05.021.CrossRefGoogle Scholar
  31. Liu, T. C., Desai, R. A., Krishnan-Sarin, S., Cavallo, D. A., & Potenza, M. N. (2011). Problematic internet use and health in adolescents: Data from a high school survey in Connecticut. The Journal of Clinical Psychiatry, 72(6), 836.  https://doi.org/10.4088/jcp.10m06057.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lovibond, P. F., & Lovibond, S. H. (1995). The structure of negative emotional states: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behaviour Research and Therapy, 33(3), 335–343.  https://doi.org/10.1016/0005-7967(94)00075-u.CrossRefPubMedGoogle Scholar
  33. Mak, K.-K., Lai, C.-M., Watanabe, H., Kim, D.-I., Bahar, N., Ramos, M., et al. (2014). Epidemiology of internet behaviors and addiction among adolescents in six Asian countries. Cyberpsychology, Behavior, and Social Networking, 17(11), 720–728.  https://doi.org/10.1089/cyber.2014.0139.CrossRefGoogle Scholar
  34. Mattick, R. P., & Clarke, C. J. (1998). Development and validation of measures of social phobia scrutiny fear and social interaction anxiety. Behaviour Research and Therapy, 36(4), 455–470.  https://doi.org/10.1016/s0005-7967(97)10031-6.CrossRefPubMedGoogle Scholar
  35. Morgan, D. L., & Morgan, R. K. (2009). Single-case research methods for the behavioural and health sciences. Thousand Oaks, CA: Sage.CrossRefGoogle Scholar
  36. Odaci, H., & Kalkan, M. (2010). Problematic internet use, loneliness and dating anxiety among young adult university students. Computers and Education, 55(3), 1091–1097.  https://doi.org/10.1016/j.compedu.2010.05.006.CrossRefGoogle Scholar
  37. Ostovar, S., Allahyar, N., Aminpoor, H., Moafian, F., Nor, M., & Griffiths, M. D. (2016). Internet addiction and its psychosocial risks (depression, anxiety, stress and loneliness) among Iranian adolescents and young adults: A structural equation model in a cross-sectional study. International Journal of Mental Health and Addiction, 14(3), 257–267.  https://doi.org/10.1007/s11469-015-9628-0.CrossRefGoogle Scholar
  38. Safran, J., & Muran, C. (2000). Negotiating the therapeutic alliance: A relational treatment guide. New York: Guilford Press.Google Scholar
  39. Sawilowsky, S. S. (2009). New effect size rules of thumb. Journal of Modern Applied Statistical Methods, 8(2), 26.CrossRefGoogle Scholar
  40. Shannon, J. (2012). The shyness and social anxiety workbook for teens: CBT and ACT skills to help you build social confidence. Oakland, CA: New Harbinger Publications.Google Scholar
  41. Takano, K., Sakamoto, S., & Tanno, Y. (2011). Ruminative and reflective forms of self-focus: Their relationships with interpersonal skills and emotional reactivity under interpersonal stress. Personality and Individual Differences, 51(4), 515–520.  https://doi.org/10.1016/j.paid.2011.05.010.CrossRefGoogle Scholar
  42. Tang, J., Yu, Y., Du, Y., Ma, Y., Zhang, D., & Wang, J. (2014). Prevalence of internet addiction and its association with stressful life events and psychological symptoms among adolescent internet users. Addictive Behaviors, 39(3), 744–747.  https://doi.org/10.1016/j.addbeh.2013.12.010.CrossRefPubMedGoogle Scholar
  43. Van Rooij, A. J., Zinn, M. F., Schoenmakers, T. M., & Van de Mheen, D. (2012). Treating internet addiction with cognitive-behavioral therapy: A thematic analysis of the experiences of therapists. International Journal of Mental Health and Addiction, 10(1), 69–82.  https://doi.org/10.1007/s11469-010-9295-0.CrossRefGoogle Scholar
  44. Wills, F. (2008). Skills in cognitive behaviour counselling and psychotherapy. Thousand Oaks, CA: Sage.Google Scholar
  45. Wölfling, K., Beutel, M. E., Dreier, M., & Müller, K. W. (2014). Treatment outcomes in patients with internet addiction: A clinical pilot study on the effects of cognitive-behavioral therapy program. BioMed Research International.  https://doi.org/10.1155/2014/425924.PubMedPubMedCentralGoogle Scholar
  46. Young, K. S. (2007). Cognitive behavior therapy with internet addicts: Treatment outcomes and implications. CyberPsychology and Behavior, 10(5), 671–679.  https://doi.org/10.1089/cpb.2007.9971.CrossRefPubMedGoogle Scholar
  47. Young, K. S. (2010). Internet addiction over the decade: A personal look back. World Psychiatry, 9(2), 91.  https://doi.org/10.1002/j.2051-5545.2010.tb00279.x.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Young, K. S., & Rogers, R. C. (1998). The relationship between depression and internet addiction. CyberPsychology and Behavior, 1(1), 25–28.  https://doi.org/10.1089/cpb.1998.1.25.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Social SciencesHeriot-Watt University MalaysiaPutrajayaMalaysia
  2. 2.Department of Information SystemsSunway University MalaysiaSubang JayaMalaysia

Personalised recommendations