Abstract
Objectives
The aim of this study was to explore the influence of “micro-” (e.g., pubs and fast-food restaurants) and “super-facilities” on area level counts of crime. Soccer stadia were selected as an example of a super-facility as their episodic use provides conditions not unlike a natural experiment. Of particular interest was whether the presence of such facilities, and their influence on the flow of people through neighborhoods on match days affects crime. Consideration was also given to how the social composition of a neighborhood might influence crime.
Methods
Crime, street network, and points of interest data were obtained for the areas around five UK soccer stadia. Counts of crime were computed for small areal units and the spatial distribution of crime examined for match and non-match days. Variables derived from graph theory were generated to estimate how micro-facilities might influence the movement flows of people on match days. Spatial econometric analyses were used to test hypotheses.
Results
Mixed support was found for the influence of neighborhood social composition on crime for both match and non-match days. Considering the influence of facilities, a selective pattern emerged with crime being elevated in those neighborhoods closest to stadia on match but not non-match days. Micro-facilities too were found to influence crime levels. Particularly clear was the finding that the influence of pubs and fast-food restaurants on estimated movement flows to and from stadia on match (but not non-match) days was associated with area level crime.
Conclusions
Our findings provide further support for ecological theories of crime and how factors that influence the likely convergence of people in urban spaces affect levels of crime.
This is a preview of subscription content,
to check access.





Notes
For example, fan surveys for the 2005/2006 through the 2009/2010 seasons of professional soccer in the UK indicate that approximately one-quarter to one-third of all fans used public transport to attend matches during this period. Moreover, roughly one-half of all supporters go to a pub, and one-quarter of all supporters eat outside the stadium and get fast food prior to match kickoffs.
Discussions with ACPO lead for soccer in England and Wales, along with UK Football Policing Unit Director, and local match day police commanders for each respective area helped ensure that there had been no variation in policing tactics or crime recording policies across the different areas during the study period.
To avoid any potential confounders for the clubs located in Sheffield (these clubs were 4.98 km apart) we eliminated potential comparison days that were match days at the other stadium as well as eliminating any other dates where alternative types of events took place at any of the relevant stadia in the study.
Stadium-specific crime count totals are available in “Appendix 1” section.
Stadium-specific and facility-specific “spillover” effects are available in “Appendix 2” section.
Summary statistics from each OA to each specific stadium are available in “Appendix 3” section.
Golledge (1995) conducted experimental research on path selection and route preference in human navigation. He found that compared to a variety of contending alternatives, including the simplest route or following the longest line, the shortest path is most influential in route choice selection between activity nodes (see also, Conroy-Dalton and Bafna 2003).
Descriptive statistics for each respective stadium are provided in “Appendix 3” section.
The ethnic groups used were based on the ONS classification system as follows: White British, White Irish, other White, White and Black Caribbean, White and Black African, other mixed, Indian, Pakistani, Bangladeshi, other Asian, Caribbean, African, other Black, Chinese, and other ethnic background.
Statistics for social disorganization variables for each respective area are provided in “Appendix 4” section.
Models for each respective stadium are provided in “Appendix 5” section.
Results from these diagnostic tests (and diagnostic plots) confirmed that negative binomial models were more appropriate than Poisson equivalents (Long and Freese 2006) and that there was general consensus across each of the stadium areas in terms of direction of effect, relatively small size of the standard errors, and overall in(equality) of coefficients between match and comparison days.
One concern of the approach adopted herein is the issue of multiplicity (Type I statistical error) that occurs when making multiple comparisons. However, the stage 1 model results were largely consistent (and in line with expectation) and this regularity in itself represents a test of whether the findings are likely to reflect Type I error. For this reason, we felt that using a Bonferroni adjustment would be unnecessarily conservative (see Rothman 1990; Savitz and Olshan 1995; Perneger 1998).
VIFs can be estimated using a standard or generalized method. The MASS package in R (used here) selects the relevant VIF, given the data analyzed.
The differences observed for OAs with more than four pubs are not significant as the 95% confidence interval extends below zero. Tables that include the AMEs for the full distribution of pubs, and other variables of interest included in our model are available upon request.
This result is consistent with Kurland et al. (2018) in which a custom-made non-parametric permutation approach was used to quantify the spatial extent of differences in the count of crime events across both match and non-match days.
We did not test theories of social disorganization here, but the results suggest that crime was lower in areas with community characteristics that are associated with social control. As such, in locating facilities, account might be taken of the social fabric of communities as well as their physical characteristics.
References
Anselin L, Kelejian HH (2007) Testing for spatial error autocorrelation in the presence of endogenous regressors. Int Reg Sci Rev 20:153–182
Anselin L, Syabri I, Kho Y (2006) GeoDa: an introduction to spatial data analysis. Geogr Anal 38:5–22
Baudains P, Braithwaite A, Johnson SD (2013) Target choice during extreme events: a discrete spatial choice model of the 2011 London riots. Criminology 51:251–285
Beavon DJK, Brantingham PL, Brantingham PJ (1994) The influence of street networks on the patterning of property offenses. Crime Prev Stud 2:115–148
Bernasco W (2013) Offenders on offending: learning about crime from criminals. Routledge, London
Bernasco W, Block R (2011) Robberies in Chicago: a block-level analysis of the influence of crime generators, crime attractors, and offender anchor points. J Res Crime Delinq 48:33–57
Billings S, Depken CA (2011) Sports events and criminal activity: a spatial analysis. In: Jewell RT (ed) Violence and aggression in sporting contests: economics, history, and policy. Springer, Berlin
Bowers K (2014) Risky facilities: crime radiators or crime absorbers? A comparison of internal and external levels of theft. J Quant Criminol 30:389–414
Bowers KJ, Tompson L (2013) A stab in the dark? Analysing temporal trends of street robbery. J Res Crime Delinq 50(4):616–631
Braga AA, Papachristos AV, Hureau DM (2014) The effects of hot spots policing on crime: an updated systematic review and meta-analysis. Justice Q 31(4):633–663
Brantingham PL, Brantingham PJ (1993) Nodes, paths and edges: considerations on the complexity of crime and the physical environment. J Environ Psychol 13:3–28
Brantingham PL, Brantingham PJ (1995) Criminality of place: crime generators and crime attractors. Eur J Crime Policy Res 3:5–26
Breetzke G, Cohn EJ (2013) Sporting events and the spatial patterning of crime in South Africa: local interpretations and international implications. Can J Criminol Crim 55:387–420
Brunsdon C, Corcoran J (2006) Using circular statistics to analyse time patterns in crime incidence. Comput Environ Urban 30:300–319
Campaniello N (2013) Mega events in sports and crime: evidence from the 1990 football world cup. J Sport Econ 14:148–170
Cohen LE, Felson M (1979) Social change and crime rate trends: a routine activity approach. Am Sociol Rev 44:588–608
Conroy-Dalton R, Bafna S (2003) The syntactical image of the city: a reciprocal definition of spatial elements and spatial syntaxes. University College London, UK
Cusens B, Shepherd J (2005) Prevention of alcohol-related assault and injury. Hosp Med (London 1998) 66:346–348
Davies T, Johnson SD (2015) Examining the relationship between road structure and burglary risk via quantitative network analysis. J Quant Criminol 31:481–507
Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271
Eck JE (1994) Drug markets and drug places: a case–control study of the spatial structure of illicit drug dealing. University of Maryland, Faculty of the Graduate School, College Park
Ekblom P (1997) Gearing up against crime: a dynamic framework to help designers keep up with the adaptive criminal in a changing world. Int J Risk Secur Crime Prev 2:249–266
Ekblom P (2001) Future imperfect: preparing for the crimes to come. Crim Justice Matters 46(1):38–40
Felson M (1986) Routine activities, social controls, rational decisions, and criminal outcomes. In: Cornish DB, Clarke RV (ed) The reasoning criminal. Springer-Verlag, New York, pp 302–327
Fisse B, Braithwaite J (1983) The impact of publicity on corporate offenders. SUNY Press, Albany
Folmer H, Oud J (2008) How to get rid of W: a latent variables approach to modelling spatially lagged variables. Environ Plan A 40:2526–2538
Frith MJ, Johnson SD, Fry HM (2017) Role of the street network in Burglars’ spatial decision-making. Criminology 55(2):344–376
Golledge RG (1995) Path selection and route preference in human navigation: a progress report. In: International conference on spatial information theory. Springer, Berlin, pp 207–222
Gorman DM, Speer PW, Labouvie PJ, Gruenewald EW (2001) Spatial dynamics of alcohol availability, neighborhood structure and violent crime. J Stud Alcohol 62:628–636
Groff ER, Lockwood B (2014) Criminogenic facilities and crime across street segments in Philadelphia uncovering evidence about the spatial extent of facility influence. J Res Crime Delinq 51:277–314
Grubesic TH, Pridemore WA, Williams DA, Philip-Tabb L (2013) Alcohol outlet density and violence: the role of risky retailers and alcohol-related expenditures. Alcohol Alcoholism 48:613–619
Haberman CP, Ratcliffe JH (2015) Testing for temporally differentiated relationships among potentially criminogenic places and census block street robbery counts. Criminology 53(3):457–483
Hird C, Ruparel C (2007) Seasonality in recorded crime: preliminary findings. Home Office, London
Jacobs J (1961) The death and life of great American cities. Vintage, New York
Jennings JM, Milam AJ, Greiner A, Furr-Holden CDM, Curriero FC, Thornton RJ (2014) Neighborhood alcohol outlets and the association with violent crime in one mid-Atlantic City: the implications for zoning policy. J Urban Health 91:62–71
Johnson SD, Bowers KJ (2010) Permeability and burglary risk: Are cul-de-sacs safer? J Quant Criminol 26:89–111
Johnson LT, Ratcliffe JH (2014) A partial test of the impact of a casino on neighborhood crime. Secur J 30(2):437–453
Johnson SD, Summers L (2015) Testing ecological theories of offender spatial decision making using a discrete choice model. Crim Delinq 61:454–480
Kurland J (2019) Arena-based events and crime: an analysis of hourly robbery data. Appl Econ 51(36):3947–3957
Kurland J, Johnson SD, Tilley N (2011a) An analysis of the spatio-temporal ‘footprint’ in and around Aston Villa (Villa Park). Association of Chief Police Officers, New York
Kurland J, Johnson SD, Tilley N (2011b) An analysis of the spatio-temporal ‘footprint’ in and around Leeds United (Elland Road). Association of Chief Police Officers, New York
Kurland J, Johnson SD, Tilley N (2014) Offenses around stadiums: a natural experiment on crime attraction and generation. J Res Crime Delinq 51:5–28
Kurland J, Johnson SD, Tilley N (2017) Hotspotting and football violence: current statistics and implications for prevention. In: Sturmey P (ed) The Wiley handbook of violence and aggression. John Wiley & Sons Ltd, Hoboken, NJ, pp 1–15
Kurland J, Tilley N, Johnson SD (2018) Football pollution: an investigation of spatial and temporal patterns of crime in and around stadia in England. Sec J 31:1–20
Kutner MH, Nachtsheim C, Neter J (2004) Applied linear regression models. McGraw-Hill, New York
LaGrange TC, Silverman RA (1999) Low self-control and opportunity: testing the general theory of crime as an explanation for gender differences in delinquency. Criminology 37:41–72
Leeper TJ (2017) Interpreting regression results using average marginal effects with R’s margins, Available at the comprehensive R Archive Network (CRAN)
Long JS, Freese J (2006) Regression models for categorical dependent variables using Stata. Stata Press, New York
Marie O (2016) Police and thieves in the stadium: measuring the (multiple) effects of football matches on crime. J R Stat Soc Ser A (Stat Soc) 179(1):273–292
Munyo I, Rossi M (2013) Frustration, Euphoria, and violent crime. J Econ Behav Org 89:136–142
Noble M, McLennan D, Wilkinson K, Whitworth A, Exley S, Barnes H, Dibben C, McLennan D (2007) The English indices of deprivation 2007. University College London, UK
Oberwittler D, Wikström PO (2009) Why small is better: advancing the study of the role of behavioral contexts in crime causation. In: Weisburd D, Bernasco W, Bruinsma G (eds) Putting crime in its place. Springer, New York, pp 35–59
Osgood WD (2000) Poisson-based regression analysis of aggregate crime rates. J Quant Criminol 16:21–43
Perneger TV (1998) What’s wrong with Bonferroni adjustments. BMJ (Clin Res Ed) 316(7139):1236–1238
Premier League (2005) National fan survey, London
Premier League (2006) National fan survey, London
Premier League (2007) National fan survey, London
Premier League (2008) National fan survey, London
Ratcliffe JH (2012) The spatial extent of criminogenic places: a changepoint regression of violence around bars. Geogr Anal 44:302–320
Rengert GF, Wasilchick J (2000) Suburban burglary: a tale of two suburbs. Charles C. Thomas, Springfield
Robinson WS (1950) Ecological correlations and the behavior of individuals. Am Sociol Rev 15:351–357
Roman CG (2005) Routine activities of youth and neighborhood violence: spatial modeling of place, time, and crime. Geographic information systems and crime analysis. Idea Group Publishing, Hershey, pp 293–310
Roncek DW, Bell R (1981) Bars, blocks, and crimes. J Environ Syst 11:35–47
Roncek DW, LoBosco A (1983) The effect of high schools on crime in their neighborhoods. Soc Sci Q 64:598
Roncek DW, Maier PA (1991) Bars, blocks, and crimes revisited: linking the theory of routine activities to the empiricism of “hot spots”. Criminology 29:725–753
Rothman KJ (1990) No adjustments are needed for multiple comparisons. Epidemiology 1:43–46
Sampson RJ, Raudenbush SW (1999) Systematic social observation of public spaces: a new look at disorder in urban Neighborhoods 1. Am J Sociol 105:603–651
Savitz DA, Olshan AF (1995) Multiple comparisons and related issues in the interpretation of epidemiologic data. Am J Epidemiol 142:904–908
Selvin HC (1958) Durkheim’s suicide and problems of empirical research. Am J Sociol 63:607–619
Shaw CR, McKay HD (1942) Juvenile delinquency and urban areas. University of Chicago Press, Chicago
Shepherd J (1994) Violent crime: the role of alcohol and new approaches to the prevention of injury. Alcohol Alcoholism 29:5–10
Simpson EH (1949) Measurement of diversity. Nature 163:688
Summers L, Caballero M (2017) Spatial conjunctive analysis of (crime) case configurations: using Monte Carlo methods for significance testing. Appl Geogr 84:55–63
Summers L, Johnson SD (2016) Does the configuration of the street network influence where outdoor serious violence takes place? Using space syntax to test crime pattern theory. J Quant Criminol 33:1–24
Taylor RB (2015) Community criminology: fundamentals of spatial and temporal scaling, ecological indicators, and selectivity bias. New York University Press, New York
Tompson LA, Bowers KJ (2015) Testing time-sensitive influences of weather on street robbery. Crim Sci 8(4):8
Townsley M, Sidebottom A (2010) All offenders are equal, but some are more equal than others: variation in journeys to crime between offenders. Criminology 48:897–917
Vandeviver C, Bernasco W, Van Daele S (2019) Do sports stadiums generate crime on days without matches? A natural experiment on the delayed exploitation of criminal opportunities. Sec J 32(1):1–19
Venables WN, Ripley BD (2002) Random and mixed effects. In: Modern applied statistics with S. Springer, New York, pp 271–300
Warburton AL, Shepherd JP (2000) Effectiveness of toughened glassware in terms of reducing injury in bars: a randomised controlled trial. Inj Prev 6:36–40
Weisburd D (2014) The law of crime concentration and the criminology of place. Criminology 53:133–157
Weisburd D, Groff ER, Yang S (2012) The criminology of place: street segments and our understanding of the crime problem. Oxford University Press, Oxford
Wilcox P, Eck JE (2011) Criminology of the unpopular. Criminol Pub Pol 10:473–482
Wooldridge JM (2015) Introductory econometrics: a modern approach. Nelson Education, Scarborough
Wortley R (1997) Reconsidering the role of opportunity in situational crime prevention. In: Newman G, Clarke RV, Shohan SG (eds) Rational choice and situational crime prevention. Ashgate Publishing, Aldershot
Zipf GK (1949) Human behavior and the principle of least effort. Addison-Wesley, Cambridge
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix 1
See Table 5.
Appendix 2
See Table 6.
Appendix 3
See Table 7.
Appendix 4
See Table 8.
Appendix 5
See Table 9.
Rights and permissions
About this article
Cite this article
Kurland, J., Johnson, S.D. The Influence of Stadia and the Built Environment on the Spatial Distribution of Crime. J Quant Criminol 37, 573–604 (2021). https://doi.org/10.1007/s10940-019-09440-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10940-019-09440-x