Bayesian Spatio-Temporal Modeling for Analysing Local Patterns of Crime Over Time at the Small-Area Level

Abstract

Objectives

Explore Bayesian spatio-temporal methods to analyse local patterns of crime change over time at the small-area level through an application to property crime data in the Regional Municipality of York, Ontario, Canada.

Methods

This research represents the first application of Bayesian spatio-temporal modeling to crime trend analysis at a large map scale. The Bayesian model, fitted by Markov chain Monte Carlo simulation using WinBUGS, stabilized risk estimates in small (census dissemination) areas and controlled for spatial autocorrelation (through spatial random effects modeling), deprivation, and scarce data. It estimated (1) (linear) mean trend; (2) area-specific differential trends; and (3) (posterior) probabilities of area-specific differential trends differing from zero (i.e. away from the mean trend) for revealing locations of hot and cold spots.

Results

Property crime exhibited a declining mean trend across the study region from 2006 to 2007. Variation of area-specific trends was statistically significant, which was apparent from the map of (95 % credible interval) differential trends. Hot spots in the north and south west, and cold spots in the middle and east of the region were identified.

Conclusions

Bayesian spatio-temporal analysis contributes to a detailed understanding of small-area crime trends and risks. It estimates crime trend for each area as well as an overall mean trend. The new approach of identifying hot/cold spots through analysing and mapping probabilities of area-specific crime trends differing from the mean trend highlights specific locations where crime situation is deteriorating or improving over time. Future research should analyse trends over three or more periods (allowing for non-linear time trends) and associated (changing) local risk factors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Aguero-Valverde J, Jovanis PP (2006) Spatial analysis of fatal and injury crashes in Pennsylvania. Accid Anal Prev 38(3):618–625

    Article  Google Scholar 

  2. Anselin L (1988) Spatial econometrics: methods and models. Kulwer, Dordrecht

    Book  Google Scholar 

  3. Anselin L (1995) Local indicators of spatial association. Geogr Anal 27(2):309–329

    Google Scholar 

  4. Banerjee S, Carlin BP, Gelfand AE (2004) Hierarchical modeling and analysis for spatial data. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  5. Bernardinelli L, Clayton D, Pascutto C, Montomoli C, Chislandi M, Songini M (1995) Bayesian analysis of space-time variation in disease risk. Stat Med 14(21):2433–2443

    Article  Google Scholar 

  6. Besag J, York J, Mollie A (1991) Bayesian image restoration, with two applications in spatial statistics. Ann Inst Stat Math 43(1):1–20

    Article  Google Scholar 

  7. Bowers KJ, Johnson SD (2005) Domestic burglary repeats and space-time clusters: the dimensions of risk. Eur J Criminol 2(1):67–92

    Article  Google Scholar 

  8. Bursik RJ Jr, Grasmick HG (1993) Economic deprivation and neighborhood crime rates, 1960–1980. Law Soc Rev 27(2):263–284

    Article  Google Scholar 

  9. Caplan JM, Kennedy LW, Miller J (2011) Risk terrain modeling: brokering criminological theory and GIS methods for crime forecasting. Justice Q 28(2):360–381

    Article  Google Scholar 

  10. Carlin N, Louis T (2000) Bayes and empirical bayes methods for data analysis. Chapman and Hall, London

    Book  Google Scholar 

  11. Ceccato V (2005) Homicide in Sao Paulo, Brazil: assessing spatial-temporal and weather variations. J Environ Psychol 25(3):307–321

    Article  Google Scholar 

  12. Chainey S, Ratcliffe J (2005) GIS and crime mapping. Wiley, Chichester

    Book  Google Scholar 

  13. Chainey S, Tompson L, Uhlig S (2008) The utility of hot spot mapping for predicting spatial patterns of crime. Secur J 21(1):4–28

    Article  Google Scholar 

  14. Cohen LE, Felson M (1979) Social change and crime rate trends: a routine activity approach. Am Socio Rev 44:588–608

    Article  Google Scholar 

  15. Congdon P (2000) Monitoring suicide mortality: a Bayesian approach. Eur J Popul 16(3):251–284

    Article  Google Scholar 

  16. Crimestat Report (2009) New York State division of criminal justice services, New York. http://criminaljustice.state.ny.us/pio/annualreport/2009-crimestat-report.pdf. Accessed 6 June 2012

  17. Dauvergne M (2008) Crime Statistics in Canada, 2007. Canadian centre for justice statistics. Statistics Canada Catalogue no. 85-002-X, vol. 28, no. 7

  18. Gelman A, Price PN (1999) All maps of parameter estimates are misleading. Stat Med 18(23):3221–3234

    Article  Google Scholar 

  19. Griffiths E, Chavez JM (2004) Communities, street guns, and homicide trajectories in Chicago, 1980–1995: merging methods for examining homicide trends across space and time. Criminol 42(4):941–978

    Article  Google Scholar 

  20. Groff ER, Weisburd D, Morris NA (2009) Where the action is at places: examining spatio-temporal patterns of juvenile crime at places using trajectory analysis and GIS. In: Weisburd D, Bernasco W, Bruinsma G (eds) Putting crime in its place: units of analysis in criminology. Springer, New York, pp 61–86

    Chapter  Google Scholar 

  21. Groff ER, Weisburd D, Yang S-M (2010) Is it important to examine crime trends at a local “micro” level? a longitudinal analysis of street to street variability in crime trajectories. J Quant Criminol 26(1):7–32

    Article  Google Scholar 

  22. Grubesic TH, Mack EA (2008) Spatio-temporal interaction of urban crime. J Quant Criminol 24(3):285–306

    Article  Google Scholar 

  23. Haining R, Law J (2007) Combining police perceptions with police records of serious crime areas: a modeling approach. J R Stat Soc Stat Soc 170(4):1019–1034

    Article  Google Scholar 

  24. Haining R, Law J (2011) Geographical information systems models and spatial data analysis. In: Batabyal A, Nijkamp P (eds) Research tools in natural resource and environmental economics. World Scientific Publishing, Singapore, pp 377–401

    Chapter  Google Scholar 

  25. Haining R, Law J, Griffith D (2009) Modelling small area counts in the presence of overdispersion and spatial autocorrelation. Comput Stat Data Anal 53(8):2923–2937

    Article  Google Scholar 

  26. Haining R, Li G, Maheswaran R, Blangiardo M, Law J, Best M, Richardson S (2010) Inference from ecological models: estimating the relative risk of stroke from air pollution exposure using small area data. Spat Spatiotemporal Epidemiol 1(2):123–131

    Article  Google Scholar 

  27. Jacquez GM (1996) A K-nearest neighbor test for space-time interaction. Stat Med 15:1935–1949

    Article  Google Scholar 

  28. Jennings WG, Maldonado-Molina MM, Reingle JM, Komro KA (2011) A multi-level approach to investigating neighborhood effects on physical aggression among urban Chicago youth. Am J Crim Just 36(4):392–407

    Article  Google Scholar 

  29. Johnson SD, Bowers KJ (2004) The stability of space-time clusters of burglary. Brit J Criminol 44(1):55–65

    Article  Google Scholar 

  30. Johnson SD, Bernasco W, Bowers KJ, Elffers H, Ratcliffe J, Rengert G, Townsley M (2007) Space-time patterns of risk: a cross national assessment of residential burglary victimization. J Quant Criminol 23(3):201–219

    Article  Google Scholar 

  31. Kelsall JE, Wakefield JC (1999). Discussion of ‘Bayesian models for spatially correlated disease and exposure data’, by Best et al. In Bayesian Statistics 6 (JM Bernardo JO Berger AP Dawid and AFM. Smith ed.) 151. Oxford University Press New York

  32. Kennedy DM (1993) The strategic management of police resources. National Institute of Justice, United States Department of Justice

    Google Scholar 

  33. Kleinschmidt I, Sharp B, Mueller I, Vounatsou P (2002) Rise in malaria incidence rates in South Africa: a small-area spatial analysis of variation in time trends. Am J Epidemio 155(3):257–264

    Article  Google Scholar 

  34. Knorr-Held L (2000) Bayesian modeling of inseparable space-time variation in disease risk. Stat Med 19(17):2555–2567

    Article  Google Scholar 

  35. Knorr-Held L, Besag J (1998) Modelling risk from a disease in time and space. Stat Med 17(18):2045–2060

    Article  Google Scholar 

  36. Knox EG (1964) The detection of space-time interactions. Appl Stat 13(1):25–30

    Article  Google Scholar 

  37. Kubrin CE, Herting JR (2003) Neighborhood correlates of homicide trends: an analysis using growth-curve modeling. Socio Q 44(3):329–350

    Article  Google Scholar 

  38. Kulldorff M (1997) A spatial scan statistic. Comm Stat Theor Meth 26:1481–1496

    Article  Google Scholar 

  39. Kulldorff M, Heffernan R, Hartman J, Assuncao RM, Mostashari F (2005) A space-time permutation scan statistic for the early detection of disease outbreaks. PLoS Med 2:216–224

    Article  Google Scholar 

  40. Law J, Chan PW (2011) Bayesian spatial random effect modeling for analyzing burglary risks controlling for offender, socioeconomic, and unknown risk factors. Appl Spat Anal Policy. doi:10.1007/s12061-011-9060-1

    Google Scholar 

  41. Law J, Haining RP (2004) A Bayesian approach to modeling binary data: the case of high-intensity crime areas. Geogr Anal 36(3):197–216

    Article  Google Scholar 

  42. Law J, Quick M (2012) Exploring links between juvenile offenders and social disorganization at a large map scale: a Bayesian modeling approach. J Geogr Syst. doi:10.1007/s10109-012-0164-1s

    Google Scholar 

  43. Lawson AB (2009) Bayesian disease mapping: hierarchical modeling in spatial epidemiology. CRC Press, New York

    Google Scholar 

  44. Leitner M, Barnett M, Kent J, Barnett T (2011) The impact of hurricane Katrina on reported crimes in Louisiana: a spatial and temporal analysis. Prof Geogr 63(2):246–261

    Article  Google Scholar 

  45. Levitt SD (1999) The limited role of changing age structure in explaining aggregate crime rates. Criminology 37(3):581–598

    Article  Google Scholar 

  46. Levitt SD (2001) Alternative strategies for identifying the link between unemployment and crime. J Quant Criminol 17(4):377–390

    Article  Google Scholar 

  47. MacNab YC (2004) Bayesian spatial and ecological models for small-area accident and injury analysis. Accid Anal Prev 36(6):1019–1028

    Article  Google Scholar 

  48. Massey JL, Krohn MD, Bonati LM (1989) Property crime and the routine activities of individuals. J Res Crime Delinquen 26(4):378–400

    Article  Google Scholar 

  49. McDowall D, Loftin C (2009) Do US city crime rates follow a national trend? The influence of nationwide conditions on local crime patterns. J Quant Criminol 25(3):307–324

    Article  Google Scholar 

  50. Meng CYK, Dempster AP (1987) A Bayesian approach to the multiplicity problem for significance testing with binomial data. Biometrics 43(2):301–311

    Article  Google Scholar 

  51. Miethe TD, Stafford MC, Long JS (1987) Social differentiation in criminal victimization: a test of routine activities/lifestyle theories. Am Socio Rev 52(2):184–194

    Article  Google Scholar 

  52. Osnas EE, Heisey DM, Rolley RE, Samuel MD (2009) Spatial and temporal patterns of chronic wasting disease: a fine-scale mapping of a wildlife epidemic in Wisconsin. Ecol Appl 19(5):1311–1322

    Article  Google Scholar 

  53. Ousey, GC, Lee, MR (2007). Homicide trends and illicit drug markets: Exploring differences across time. JQ 24 1: 48–79

    Google Scholar 

  54. Ratcliffe JH (2001) Policing urban burglary. Trends and issues in crime and criminal justice, UK 213

    Google Scholar 

  55. Ratcliffe JH (2002) Aoristic signatures and the spatio-temporal analysis of high volume crime patterns. J Quant Criminol 18(1):23–43

    Article  Google Scholar 

  56. Ratcliffe JH (2004) The hot spot matrix: a framework for the spatio-temporal targeting of crime reduction. Police Pract Res 5(1):5–23

    Article  Google Scholar 

  57. Rengert GF, Lockwood B (2009) Geographical units of analysis and the analysis of crime. In: Weisburd D, Bernasco W, Bruinsma G (eds) Putting crime in its place: units of analysis in geographic criminology. Springer, New York, pp 109–122

  58. Sherman LW (1990) Police crackdowns: initial and residual deterrence. Crime Justice 12:1–48

    Article  Google Scholar 

  59. Sherman LW (1995) Hot spots of crime and criminal careers of places. In: Eck JE, Weisburd D (eds) Crime and place. Criminal Justice Press, New York, pp 35–52

    Google Scholar 

  60. Shumate RP, Crowther RF (1966) Quantitative methods for optimizing the allocation of police resources. J Crim Law Criminol Police Sci 57(2):197–206

    Article  Google Scholar 

  61. Silva GL, Dean CB, Niyonsenga T, Vanasse A (2007) Hierarchical Bayesian spatiotemporal analysis of revascularization odds using smoothing splines. Stat Med 27(13):2381–2401

    Article  Google Scholar 

  62. Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc B Stat Meth 64(4):583–639

    Article  Google Scholar 

  63. Statistics Canada (2012) Dissemination area (DA). http://www12.statcan.ca/census-recensement/2011/ref/dict/geo021-eng.cfm. Accessed 29 March 2012

  64. Stucky TD, Ottensmann JR (2009) Land use and violent crime. Criminol 47(4):1223–1264

    Article  Google Scholar 

  65. Tarling R, Morris K (2010) Reporting crime to the police. Brit J Criminol 50(3):474–490

    Article  Google Scholar 

  66. Torabi M, Rosychuk RJ (2012) Hierarchical Bayesian spatiotemporal analysis of childhood cancer trends. Geogr Anal 44:109–120

    Article  Google Scholar 

  67. Townsley M (2008) Visualizing space time patterns in crime: the hot spot plot. Crim Patterns Anal 1(1):61–75

    Google Scholar 

  68. Weisburd D, Bushway S, Lum C, Yang S-M (2004) Trajectories of crime at places: a longitudinal study of street segments in the city of seattle. Criminol 42(4):283–321

    Article  Google Scholar 

  69. Wikstrom POH (1991) Urban crime, criminals, and victims: the swedish experience in an Anglo-American comparative perspective. Springer, Stockholm

    Book  Google Scholar 

  70. Willbach H (1938) The trend of crime in New York City. Am Inst Crim L Criminol 29:62–75

    Google Scholar 

  71. Winsberg MD (1993) Are crime waves in the United States regional or national? J Crim Justice 21(5):517–520

    Article  Google Scholar 

  72. Yu Q, Scribner R, Carlin B, Theall K, Simonsen N, Ghosh-Dastidar B, Cohen D, Mason K (2008) Multilevel spatio-temporal dual changepoint models for relating alcohol outlet destruction and changes in neighborhood rates of assaultive violence. Geospat Health 2(2):161–172

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) through grant number RGPIN-371625-2009. We gratefully acknowledge the York Regional Police for the crime data. Without their support and understanding in providing the necessary crime data, this research would not be possible. Analysis was based on data and digital maps from the Statistics Canada Canadian Census 2006. We express thanks to the anonymous referees for their very constructive comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jane Law.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Law, J., Quick, M. & Chan, P. Bayesian Spatio-Temporal Modeling for Analysing Local Patterns of Crime Over Time at the Small-Area Level. J Quant Criminol 30, 57–78 (2014). https://doi.org/10.1007/s10940-013-9194-1

Download citation

Keywords

  • Probability mapping
  • Crime trends
  • Hot spots
  • Bayesian hierarchical models
  • Spatio-temporal
  • Spatial