Skip to main content
Log in

Music Rhythmic Cueing for the Production of Non-native Speech Rhythm: Evidence from Chinese Learners of French

  • Published:
Journal of Psycholinguistic Research Aims and scope Submit manuscript

Abstract

The present study examined the cross-modal cueing effect of musical rhythmic beats on non-native speech rhythm production. Two groups of Chinese learners of French were cued respectively with rhythmic beats that either matched (matching group) or mismatched (mismatching group) the rhythm patterns of the target French sentences. The participants were asked to produce the target sentences after cueing and their speech production was compared with their baseline condition in which no cueing was used. The results showed that the matching group produced the target French rhythm significantly better after cueing with musical rhythmic beats that matched the French rhythm, in contrast to the mismatching group where no significant improvement was found. Individual differences in auditory short-term memory and rhythmic skills were not related to improvement in producing French rhythm after cueing. The results suggest that musical rhythmic cueing can be used to improve non-native speech rhythm production, further indicating a close link between speech and music in the temporal domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available at:https://osf.io/jxysw/?view_only=8e4eb5e8e7a14482b8a7adbeea266523

Notes

  1. We also performed regression and correlation analyses for each of the three rhythm tasks separately. Similar patterns have been obtained (i.e., non-significant results), and please refer to Appendix 2 and 3 of the supplementary materials for more details.

References

  • Baddeley, A. D. (2007). Working memory, thought, and action. Oxford University Press.

    Book  Google Scholar 

  • Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48.

    ADS  Google Scholar 

  • Beckman, M. E. (1996). When is a syllable not a syllable? In T. Otake, & A. Cutler (Eds.), Phonological structure and language processing: Cross-linguistic studies (pp. 95–123), Mouton de Gruyter.

  • Boersma, P., & Weenik, D. (2019). Praat: Doing phonetics by computer [Computer program]. Version 6.1.08. Retrieved December 1, 2019, from http://www.praat.org/.

  • Carter, P. M. (2005). Quantifying rhythmic differences between Spanish, English, and Hispanic English. In R. S. Gess, & E. J. Rubin (Eds.), Theoretical and experimental approaches to romance linguistics: Selected papers from the 34th linguistic symposium on romance languages (pp. 63–75), John Benjamins.

  • Cason, N., Astésano, C., & Schön, D. (2015). Bridging music and speech rhythm: Rhythmic cueing and audio–motor training affect speech perception. Acta Psychologica, 155, 43–50.

    Article  PubMed  Google Scholar 

  • Cason, N., Marmursztejn, M., D’Imperio, M., & Schön, D. (2020). Rhythmic abilities correlate with L2 prosody imitation abilities in typologically different languages. Language and Speech, 63(1), 149–165.

    Article  PubMed  Google Scholar 

  • Cason, N., & Schön, D. (2012). Rhythmic cueing enhances the phonological processing of speech. Neuropsychologia, 50(11), 2652–2658.

    Article  PubMed  Google Scholar 

  • Christiner, M., & Reiterer, S. M. (2013). Song and speech: Examining the link between singing talent and speech imitation ability. Frontiers in Psychology, 4, 874.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cummins, F., & Port, R. (1998). Rhythmic constraints on stress timing in English. Journal of Phonetics, 26(2), 145–171.

    Article  Google Scholar 

  • Cutler, A., Mehler, J., Norris, D., & Segui, J. (1992). The monolingual nature of speech segmentation by bilinguals. Cognitive Psychology, 24(3), 381–410.

    Article  CAS  PubMed  Google Scholar 

  • D’Imperio, M., Cavone, R., & Petrone, C. (2014). Phonetic and phonological imitation of intonation in two varieties of Italian. Frontiers in Psychology, 5, 1226.

    PubMed  PubMed Central  Google Scholar 

  • Dellatolas, G., Watier, L., Le Normand, M. T., Lubart, T., & Chevrie-Muller, C. (2009). Rhythm reproduction in kindergarten, reading performance at second grade, and developmental dyslexia theories. Archives of Clinical Neuropsychology, 24(6), 555–563.

    Article  PubMed  Google Scholar 

  • Di Cristo, A. (1998). Intonation in French. In D. Hirst & D. A. Cristo (Eds.), Intonation systems: A survey of twenty languages (pp. 195–218). Cambridge University Press.

    Google Scholar 

  • Di Cristo, A., & Hirst, D. (1993). Rythme Syllabique, rythme mélodique et représentation hiérarchique de la prosodie du français. Travaux de l’Institut de Phonétique d’Aix, 15, 9–24.

    Google Scholar 

  • Dupoux, E., Sebastián-Gallés, N., Navarrete, E., & Peperkamp, S. (2008). Persistent stress ‘deafness’: The case of French learners of Spanish. Cognition, 106(2), 682–706.

    Article  PubMed  Google Scholar 

  • Ellis, R. J., & Jones, M. R. (2010). Rhythmic context modulates foreperiod effects. Attention Perception & Psychophysics, 72(8), 2274–2288.

    Article  Google Scholar 

  • Fiveash, A., Bedoin, N., Gordon, R. L., & Tillmann, B. (2021). Processing rhythm in speech and music: Shared mechanisms and implications for developmental speech and language disorders. Neuropsychology, 35(8), 771–791.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fiveash, A., Bella, S. D., Bigand, E., Gordon, R. L., & Tillmann, B. (2022). You got rhythm, or more: The multidimensionality of rhythmic abilities. Attention Perception & Psychophysics, 84(4), 1370–1392.

    Article  Google Scholar 

  • Fotidzis, T. S., Moon, H., Steele, J. R., & Magne, C. L. (2018). Cross-modal cueing effect of rhythm on visual word recognition and its relationships to music aptitude and reading achievement. Brain Sciences, 8(12), 210.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fowler, C. A. (1986). An event approach to the study of speech perception from a direct-realist perspective. Journal of Phonetics, 14(1), 3–28.

    Article  Google Scholar 

  • Fujii, S., & Schlaug, G. (2013). The Harvard beat Assessment Test (H-BAT): A battery for assessing beat perception and production and their dissociation. Frontiers in Human Neuroscience, 7, 771.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gathercole, S. E., Pickering, S. J., Hall, M., & Peaker, S. M. (2001). Dissociable lexical and phonological influences on serial recognition and serial recall. The Quarterly Journal of Experimental Psychology Section A, 54(1), 1–30.

    Article  CAS  Google Scholar 

  • Gordon, R. L., Magne, C. L., & Large, E. W. (2011). EEG correlates of song prosody: A new look at the relationship between linguistic and musical rhythm. Frontiers in Psychology, 2, 352.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goswami, U. (2011). A temporal sampling framework for developmental dyslexia. Trends in Cognitive Science, 15(1), 3–10.

    Article  Google Scholar 

  • Grabe, E., and Low, E. L. (2002). Durational variability in speech and the rhythm class hypothesis. In C. Gussenhoven, and N. Warner (Eds.), Laboratory phonology 7 (pp. 515–546). Mouton de Gruyter.

    Google Scholar 

  • Grabe, E., Watson, E., & Post, B. (1999). The acquisition of rhythmic patterns in English and French. In Proceedings of XIVth ICPhS, San Francisco (pp. 1201–1204). USA.

  • Grahn, J. A., & Brett, M. (2007). Rhythm and beat perception in motor areas of the brain. Journal of Cognitive Neuroscience, 19(5), 893–906.

    Article  PubMed  Google Scholar 

  • Grahn, J. A., & Schuit, D. (2012). Individual differences in rhythmic ability: Behavioral and neuroimaging investigations. Psychomusicology: Music Mind and Brain, 22(2), 105–121.

    Article  Google Scholar 

  • Guenther, F. H. (2006). Cortical interactions underlying the production of speech sounds. Journal of Communication Disorders, 39(5), 350–365.

    Article  PubMed  Google Scholar 

  • Hickok, G., Buchsbaum, B., Humphries, C., & Muftuler, T. (2003). Auditory–motor interaction revealed by fMRI: Speech, music, and working memory in area Spt. Journal of Cognitive Neuroscience, 15(5), 673–682.

    Article  PubMed  Google Scholar 

  • Hirst, D., Di Cristo, A., & Nishinuma, Y. (2001). Prosodic parameters of French: A cross-language approach. In Contrastive studies of Japanese and other languages series (pp.7–20). National Institute for Japanese Language.

  • Hupp, J. M., Sloutsky, V. M., & Culicover, P. W. (2009). Evidence for a domain-general mechanism underlying the suffixation preference in language. Language and Cognitive Processes, 24(6), 876–909.

    Article  Google Scholar 

  • Isaacs, T., & Trofimovich, P. (2010). Falling on sensitive ears? The influence of musical ability on extreme raters’ judgments of L2 pronunciation. TESOL Quarterly, 44(2), 375–386.

    Article  Google Scholar 

  • Jackendoff, R. S. (2009). Parallels and nonparallels between language and music. Music Perception, 26(3), 195–204.

    Article  Google Scholar 

  • Jensen, A., Merz, S., Spence, C., & Frings, C. (2020). Interference of irrelevant information in multisensory selection depends on attentional set. Attention Perception & Psychophysics, 82, 1176–1195.

    Article  Google Scholar 

  • Jones, M. R., & Boltz, M. (1989). Dynamic attending and responses to time. Psychological Review, 96(3), 459–491.

    Article  CAS  PubMed  Google Scholar 

  • Jones, M. R., Boltz, M., & Kidd, G. (1982). Controlled attending as a function of melodic and temporal context. Perception & Psychophysics, 32(3), 211–218.

    Article  CAS  Google Scholar 

  • Jones, M. R., Moynihan, H., MacKenzie, N., & Puente, J. (2002). Temporal aspects of stimulus-driven attending in dynamic arrays. Psychological Science, 13(4), 313–319.

    Article  PubMed  Google Scholar 

  • Jun, S. A., & Fougeron, C. (2000). A phonological model of French intonation. In A. Botinis (Ed.), Intonation: Analysis, modeling and technology (pp. 209–242). Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Jungers, M. K., & Hupp, J. M. (2018). Music to my mouth: Evidence of domain general rate cueing in adults and children. Cognitive Development, 48, 219–224.

    Article  Google Scholar 

  • Jungers, M. K., Hupp, J. M., & Dickerson, S. D. (2016). Language cueing by music and speech: Evidence of a shared processing mechanism. Music Perception, 34(1), 33–39.

    Article  Google Scholar 

  • Kartushina, N., Hervais-Adelman, A., Frauenfelder, U. H., & Golestani, N. (2015). The effect of phonetic production training with visual feedback on the perception and production of foreign speech sounds. The Journal of the Acoustical Society of America, 138(2), 817–832.

    Article  PubMed  ADS  Google Scholar 

  • Kolinsky, R., Cuvelier, H., Goetry, V., Peretz, I., & Morais, J. (2009). Music training facilitates lexical stress processing. Music Perception, 26(3), 235–246.

    Article  Google Scholar 

  • Kraus, N., & Banai, K. (2007). Auditory-processing malleability: Focus on language and music. Current Directions in Psychological Science, 16(2), 105–110.

    Article  Google Scholar 

  • Li, A., & Post, B. (2014). L2 acquisition of prosodic properties of speech rhythm. Studies in Second Language Acquisition, 36, 223–255.

    Article  Google Scholar 

  • Liberman, A. M., & Mattingly, I. G. (1985). The motor theory of speech perception revised. Cognition, 21(1), 1–36.

    Article  CAS  PubMed  Google Scholar 

  • Liberman, M., & Prince, A. (1977). On stress and linguistic rhythm. Linguistic Inquiry, 8(2), 249–336.

    Google Scholar 

  • Liu, X. (2021). Prominence and expectation in speech and music through the lens of pitch processing. Frontiers in Psychology, 12, 620640.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, X. (2022). Individual differences in processing non-speech acoustic signals influence cue weighting strategies for L2 speech contrasts. Journal of Psycholinguistic Research, 51(4), 903–916.

    Article  PubMed  Google Scholar 

  • London, J. (2012). Three things linguists need to know about rhythm and time in music. Empirical Musicology Review, 7(1–2), 5–11.

    Article  Google Scholar 

  • Loui, P., Guenther, F. H., Mathys, C., & Schlaug, G. (2008). Action–perception mismatch in tone-deafness. Current Biology, 18(8), R331–R332.

    Article  CAS  PubMed  Google Scholar 

  • Low, E. L., Grabe, E., & Nolan, F. J. (2000). Quantitative characterizations of speech rhythm: Syllable-timing in Singapore English. Language and Speech, 43(4), 377–401.

    Article  Google Scholar 

  • Magne, C., Astésano, C., Aramaki, M., Ystad, S., Kronland-Martinet, R., & Besson, M. (2007). Influence of syllabic lengthening on semantic processing in spoken French: Behavioral and electrophysiological evidence. Cerebral Cortex, 17(11), 2659–2668.

    Article  PubMed  Google Scholar 

  • Magne, C., Jordan, D. K., & Gordon, R. L. (2016). Speech rhythm sensitivity and musical aptitude: ERPs and individual differences. Brain and Language, 153, 13–19.

    Article  PubMed  Google Scholar 

  • Mattys, S. L., & Samuel, A. G. (1997). How lexical stress affects speech segmentation and interactivity: Evidence from the migration paradigm. Journal of Memory and Language, 36(1), 87–116.

    Article  Google Scholar 

  • Meltzer, R. H., Martin, J. G., Mills, C. B., Imhoff, D. L., & Zohar, D. (1976). Reaction time to temporally-displaced phoneme targets in continuous speech. Journal of Experimental Psychology: Human Perception and Performance, 2(2), 277–290.

    CAS  PubMed  Google Scholar 

  • Mok, P. P. K., & Dellwo, V. (2008). Comparing native and non-native speech rhythm using acoustic rhythmic measures: Cantonese, Beijing Mandarin and English. In Proceedings of speech prosody 2008 (pp. 423–426). Campinas, Brazil.

  • Morgan, J. L., & Saffran, J. R. (1995). Emerging integration of sequential and suprasegmental information in preverbal speech segmentation. Child Development, 66(4), 911–936.

    Article  CAS  PubMed  Google Scholar 

  • Müllensiefen, D., Gingras, B., Musil, J., & Stewart, L. (2014). The musicality of non-musicians: An index for assessing musical sophistication in the general population. PLoS One, 9(2), e89642.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Ordin, M., & Polyanskaya, L. (2015). Acquisition of speech rhythm in a second language by learners with rhythmically different native languages. The Journal of the Acoustical Society of America, 138(2), 533–544.

    Article  PubMed  ADS  Google Scholar 

  • Otake, T., Hatano, G., Cutler, A., & Mehler, J. (1993). Mora or syllable? Speech segmentation in Japanese. Journal of Memory and Language, 32(2), 258–278.

    Article  Google Scholar 

  • Patel, A. D., & Iversen, J. R. (2014). The evolutionary neuroscience of musical beat perception: The Action Simulation for Auditory Prediction (ASAP) hypothesis. Frontiers in Systems Neuroscience, 8, 57.

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel, A. D., Iversen, J. R., & Rosenberg, J. C. (2006). Comparing the rhythm and melody of speech and music: The case of British English and French. The Journal of the Acoustical Society of America, 119(5), 3034–3047.

    Article  PubMed  ADS  Google Scholar 

  • Pecenka, N., & Keller, P. E. (2011). The role of temporal prediction abilities in interpersonal sensorimotor synchronization. Experimental Brain Research, 211(3), 505–515.

    Article  PubMed  Google Scholar 

  • Peelle, J. E., & Davis, M. H. (2012). Neural oscillations carry speech rhythm through to comprehension. Frontiers in Psychology, 3, 320.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peretz, I., & Coltheart, M. (2003). Modularity of music processing. Nature Neuroscience, 6(7), 688–691.

    Article  CAS  PubMed  Google Scholar 

  • Peretz, I., & Zatorre, R. J. (2005). Brain organization for music processing. Annual Review of Psychology, 56(1), 89–114.

    Article  PubMed  Google Scholar 

  • Perrone-Bertolotti, M., Kauffmann, L., Pichat, C., Vidal, J. R., & Baciu, M. (2017). Effective connectivity between ventral occipito-temporal and ventral inferior frontal cortex during lexico-semantic processing. A dynamic causal modeling study. Frontiers in Human Neuroscience, 11, 325.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peter, V., McARTHUR, G., & Thompson, W. F. (2012). Discrimination of stress in speech and music: A mismatch negativity (MMN) study. Psychophysiology, 49(12), 1590–1600.

    Article  PubMed  Google Scholar 

  • Pitt, M. A., & Samuel, A. G. (1990). The use of rhythm in attending to speech. Journal of Experimental Psychology: Human Perception and Performance, 16(3), 564–573.

    CAS  PubMed  Google Scholar 

  • Posedel, J., Emery, L., Souza, B., & Fountain, C. (2012). Pitch perception, working memory, and second-language phonological production. Psychology of Music, 40(4), 508–517.

    Article  Google Scholar 

  • Pulvermüller, F., & Fadiga, L. (2010). Active perception: Sensorimotor circuits as a cortical basis for language. Nature Reviews Neuroscience, 11(5), 351–360.

    Article  PubMed  Google Scholar 

  • Quené, H., & Port, R. F. (2005). Effects of timing regularity and metrical expectancy on spoken-word perception. Phonetica, 62(1), 1–13.

    Article  PubMed  Google Scholar 

  • Rammsayer, T., & Altenmüller, E. (2006). Temporal information processing in musicians and nonmusicians. Music Perception, 24(1), 37–48.

    Article  Google Scholar 

  • Ramus, F., Nespor, M., & Mehler, J. (1999). Correlates of linguistic rhythm in the speech signal. Cognition, 73(3), 265–292.

    Article  CAS  PubMed  Google Scholar 

  • Repp, B. H., & Su, Y. H. (2013). Sensorimotor synchronization: A review of recent research (2006–2012). Psychonomic Bulletin & Review, 20(3), 403–452.

    Article  Google Scholar 

  • Saito, S. (2001). The phonological loop and memory for rhythms: An individual differences approach. Memory (Hove, England), 9(4–6), 313–322.

    Article  CAS  PubMed  Google Scholar 

  • Salame, P., & Baddeley, A. (1989). Effects of background music on phonological short-term memory. The Quarterly Journal of Experimental Psychology Section A, 41(1), 107–122.

    Article  Google Scholar 

  • Schmidt-Kassow, M., & Kotz, S. A. (2009). Event-related brain potentials suggest a late interaction of meter and syntax in the P600. Journal of Cognitive Neuroscience, 21(9), 1693–1708.

    Article  PubMed  Google Scholar 

  • Schmidt-Kassow, M., Rothermich, K., Schwartze, M., & Kotz, S. A. (2011). Did you get the beat? Late proficient french-german learners extract strong–weak patterns in tonal but not in linguistic sequences. NeuroImage, 54(1), 568–576.

    Article  PubMed  Google Scholar 

  • Slevc, L. R., & Miyake, A. (2006). Individual differences in second-language proficiency: Does musical ability matter? Psychological Science, 17(8), 675–681.

    Article  PubMed  Google Scholar 

  • Snowling, M., Chiat, S., & Hulme, C. (1991). Words, nonwords, and phonological processes: Some comments on Gathercole, Willis, Emslie, and Baddeley. Applied Psycholinguistics, 12(3), 369–373.

    Article  Google Scholar 

  • Stahl, B., Kotz, S. A., Henseler, I., Turner, R., & Geyer, S. (2011). Rhythm in disguise: Why singing may not hold the key to recovery from aphasia. Brain, 134(10), 3083–3093.

    Article  PubMed  PubMed Central  Google Scholar 

  • Su, Y. H., & Pöppel, E. (2012). Body movement enhances the extraction of temporal structures in auditory sequences. Psychological Research Psychologische Forschung, 76(3), 373–382.

    Article  PubMed  Google Scholar 

  • Summerfield, C., & Egner, T. (2009). Expectation (and attention) in visual cognition. Trends in Cognitive Sciences, 13(9), 403–409.

    Article  PubMed  Google Scholar 

  • Thaut, M. (2005). Rhythm, music and the brain: Scientific foundations and clinical applications. Taylor and Francis.

    Google Scholar 

  • Thaut, M., & Abiru, M. (2010). Rhythmic auditory stimulation in rehabilitation of movement disorders: A review of current research. Music Perception, 27(4), 263–269.

    Article  Google Scholar 

  • Tierney, A., & Kraus, N. (2013). Music training for the development of reading skills. Progress in Brain Research, 207, 209–241.

    Article  PubMed  Google Scholar 

  • Vaissière, J. (1991). Rhythm, accentuation and final lengthening in French. In J. Sundberg, L. Nord, & R. Carlson (Eds.), Music, language, speech and brain (pp. 108–120). Macmillan.

    Chapter  Google Scholar 

  • van Noorden, L., & Moelants, D. (1999). Resonance in the perception of musical pulse. Journal of New Music Research, 28(1), 43–66.

    Article  Google Scholar 

  • Wallentin, M., Nielsen, A. H., Friis-Olivarius, M., Vuust, C., & Vuust, P. (2010). The musical ear test, a new reliable test for measuring musical competence. Learning and Individual Differences, 20(3), 188–196.

    Article  Google Scholar 

  • White, L., & Mattys, S. L. (2007). Calibrating rhythm: First language and second language studies. Journal of Phonetics, 35(4), 501–522.

    Article  Google Scholar 

  • Whitworth, N. (2002). Speech rhythm production in three German-English bilingual families. In D. Nelson (Ed.), Leeds working papers in linguistics and phonetics (Vol. 9, pp. 175–205).

  • Wiener, S., & Turnbull, R. (2016). Constraints of tones, vowels and consonants on lexical selection in Mandarin Chinese. Language and Speech, 59(1), 59–82.

    Article  PubMed  Google Scholar 

  • Williamson, V. J., Baddeley, A. D., & Hitch, G. J. (2010). Musicians’ and nonmusicians’ short-term memory for verbal and musical sequences: Comparing phonological similarity and pitch proximity. Memory & Cognition, 38(2), 163–175.

    Article  Google Scholar 

  • Zhang, Y., Baills, F., & Prieto, P. (2020). Hand-clapping to the rhythm of newly learned words improves L2 pronunciation: Evidence from training Chinese adolescents with French words. Language Teaching Research, 24(5), 666–689.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Program of the Shanghai Planning Office of Philosophy and Social Science (No. 2022EYY006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoluan Liu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Liu, Y. Music Rhythmic Cueing for the Production of Non-native Speech Rhythm: Evidence from Chinese Learners of French. J Psycholinguist Res 53, 10 (2024). https://doi.org/10.1007/s10936-024-10044-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10936-024-10044-1

Keywords

Navigation