The Role of Sensory Perception, Emotionality and Lifeworld in Auditory Word Processing: Evidence from Congenital Blindness and Synesthesia

Abstract

Although it has been established that human beings process concrete and abstract words differently, it is still a matter of debate what factors contribute to this difference. Since concrete concepts are closely tied to sensory perception, perceptual experience seems to play an important role in their processing. The present study investigated the processing of nouns during an auditory lexical decision task. Participants came from three populations differing in their visual-perceptual experience: congenitally blind persons, word-color synesthetes, and sighted non-synesthetes. Specifically, three features with potential relevance to concreteness were manipulated: sensory perception, emotionality, and Husserlian lifeworld, a concept related to the inner versus the outer world of the self. In addition to a classical concreteness effect, our results revealed a significant effect of lifeworld: words that are closely linked to the internal states of humans were processed faster than words referring to the outside world. When lifeworld was introduced as predictor, there was no effect of emotionality. Concerning participants’ perceptual experience, an interaction between participant group and item characteristics was found: the effects of both concreteness and lifeworld were more pronounced for blind compared to sighted participants. We will discuss the results in the context of embodied semantics, and we will propose an approach to concreteness based on the individual’s bodily experience and the relatedness of a given concept to the self.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Notes

  1. 1.

    BA 37 is an association area in the left inferior posterior temporal lobe, which is assumed to be activated while reading words and naming pictures.

References

  1. Altarriba, J., Bauer, L. M., & Benvenuto, C. (1999). Concreteness, context availability, and imageability ratings and word associations for abstract, concrete, and emotion words. Behavior Research Methods, Instruments & Computers, 31(4), 578–602.

    Article  Google Scholar 

  2. Altarriba, J., & Bauer, L. M. (2004). The distinctiveness of emotion concepts: A comparison between emotion, abstract, and concrete words. American Journal of Psychology, 117, 389–410.

    Article  PubMed  Google Scholar 

  3. Andersen, E. S., Dunlea, A., & Kekelis, L. (1984). Blind children’s language: Resolving some differences. Journal of Child Language, 11(3), 645–664.

    Article  PubMed  Google Scholar 

  4. Ansorge, U., & Leder, H. (2017). Wahrnehmung und Aufmerksamkeit (2nd ed.). Wiesbaden: Springer.

    Google Scholar 

  5. Baayen, R. H. (2008). Analyzing linguistic data: A practical introduction to statistics using R. Cambridge: University Press.

    Google Scholar 

  6. Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4), 390–412.

  7. Barsalou, L. W., & Wiemer-Hastings, K. (2005). Situating abstract concepts. In D. Pecher & R. A. Zwaan (Eds.), Grounding cognition: The role of perception and action in memory, language, and thought (pp. 129–163). New York: Cambridge University Press.

    Google Scholar 

  8. Baschek, I.-L., Bredenkamp, J., Oehrle, B., & Wippich, W. (1977). Bestimmung der Bildhaftigkeit (I), Konkretheit (C) und der Bedeutungshaltigkeit (m’) von 800 Substantiven. Zeitschrift für experimentelle und angewandte Psychologie, XXIV(3), 353–396.

    Google Scholar 

  9. Bates, D. M., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48.

    Article  Google Scholar 

  10. Binder, J. R., Westbury, C. F., McKierman, K. A., Possing, E. T., & Medler, D. A. (2005). Distinct brain systems for processing concrete and abstract concepts. Journal of Cognitive Neuroscience, 17, 905–917.

    Article  PubMed  Google Scholar 

  11. Bleasdale, F. A. (1987). Concreteness-dependent associative priming: Separate lexical organization for concrete and abstract words. Journal of Experimental Psychology: Learning, Memory and Cognition, 13, 582–594.

    Google Scholar 

  12. Breedin, S. D., Saffran, E. M., & Coslett, H. B. (1994). Reversal of the concreteness effect in a patient with sementic dementia. Cognitive Neuropsychology, 11, 617–660.

    Article  Google Scholar 

  13. Brown, G. D. A., & Watson, F. L. (1987). First in, first out: Word learning age and spoken word frequency as predictors of word familiarity and word naming latency. Memory & Cognition, 15(3), 203–216.

    Article  Google Scholar 

  14. Büchel, C., Price, C. J., & Friston, K. (1998). A multimodal language region in the ventral visual pathway. Nature, 394, 274–277.

    Article  PubMed  Google Scholar 

  15. Coltheart, V., Laxon, V. J., & Keating, C. (1988). Effects of word imageability and age of acquisition on children’s reading. British Journal of Psychology Society, 79, 1–12.

    Article  Google Scholar 

  16. De Bleser, R. (2006). A linguist’s view on progressive anomia: Evidence for delbrück (1886) in modern neurolinguistic research. Cortex, 42, 805–810.

    Article  PubMed  Google Scholar 

  17. De Groot, A. M. B. (1989). Representational aspects of word imageability and word frequency as assessed through word association. Journal Experimental Psychology: Learning, Memory and Cognition, 15(5), 824–845.

    Google Scholar 

  18. Duden, (2006). Die deutsche Grammatik (4th ed.). Mannheim: Dudenverlag.

    Google Scholar 

  19. Dunlea, A. (1989). Vision and the emergence of meaning: Blind and sighted children’s early language. Cambridge: Cambridge University Press.

    Google Scholar 

  20. Eaglemann, D. M., Kagan, A. D., Nelson, S. S., Sagaram, D., & Sarma, A. K. (2007). A standardized test battery for the study of Synesthesia. Journal of Neuroscience Methods, 159(1), 139–145.

    Article  Google Scholar 

  21. Ewald, P. (1992). Konkreta versus Abstrakta. Zur semantischen Subklassifikation deutscher Substantive. Sprachwissenschaft, 17, 259–281.

    Google Scholar 

  22. Franklin, S. (1989). Dissociations in auditory word comprehension: Evidence from nine fluent aphasic patients. Aphasiology, 3(3), 189–207.

    Article  Google Scholar 

  23. Gernsbacher, M. A. (1984). Resolving 20 years of incosistent interactions between lexical amiliarity and Orothography, concreteness, and polysemy. Journal of Experimental Psychology: General, 113(2), 256–281.

    Article  Google Scholar 

  24. Goh, W. D., Yap, M. J., Lau, M. C., NG, M. M. R., & Tan, L. C. (2016). Semantic richness effects in spoken word recognition: A lexical decision and semantic categorization megastudy. Frontiers in Psychology, 7, 1–10.

    Article  Google Scholar 

  25. Husserl, E. (1986). Phänomenologie der Lebenswelt. Ausgewählte Texte I. Dietzingen: Reclam.

    Google Scholar 

  26. Howell, J. R., & Bryden, M. P. (1987). The effects of word orientation and imageability on visual half-field presentations with a lexical decision task. Neuropsychologia, 25(3), 527–538.

    Article  PubMed  Google Scholar 

  27. Kousta, S.-T., Vigliocco, G., Vinson, D. P., Andrews, M., & Del Campo, E. (2011). The representation of abstract words: Why emotion matters. Journal of Experimental Psychology: General, 140, 14–34.

    Article  Google Scholar 

  28. Lee, C., & Federmeier, K. (2008). To watch, to see, and to differ. An event-related potential study of concreteness effects as a function of word class and lexical ambiguity. Brain and Language, 104(2), 145–158.

    Article  PubMed  Google Scholar 

  29. Mills, C. B., Edelson, S. K., Thomas, A. T., Simon-Dack, S. L., & Innis, J. A. (2002). The color of two alphabets for a multilingual synesthete. Perception, 31, 1371–1394.

    Article  PubMed  Google Scholar 

  30. Mills, C. B., Innis, J., Westendorf, T., Owsianiecki, L., & McDonald, A. (2006). Effect of a synesthete’s photisms on name recall. Cortex, 42, 155–163.

    Article  PubMed  Google Scholar 

  31. Morton, J. (1969). Interaction of information in word recognition. Psychological Review, 76, 165–178.

    Article  Google Scholar 

  32. Noppeney, U., & Price, C. J. (2004). Retrieval of abstract semantic. NeuroImage, 22, 164–170.

    Article  PubMed  Google Scholar 

  33. Paivio, A. (1968). A factor-analytic study of word attributes and verbal learning. Journal of Verbal Learning and Verbal Behavior, 7, 41–49.

    Article  Google Scholar 

  34. Paivio, A. (1991). Dual-coding theory: Retrospect and current status. Canadian Journal of Psychology, 45, 255–287.

    Article  Google Scholar 

  35. Paivio, A., & Begg, I. (1981). Imagery and comprehension latencies as a function of sentence concreteness and structure. Perception & Psychophysics, 10, 408–412.

    Article  Google Scholar 

  36. Paivio, A., & Okovita, H. W. (1971). Word imagery modalities and associative learning in blind and sighted subjects. Journal of Verbal Learning and Verbal Behavior, 10, 506–510.

    Article  Google Scholar 

  37. Papagno, C., Fogliata, A., Catricalà, E., & Miniussi, C. (2009). The lexical processing of abstract and concrete nouns. Brain research, 1263, 78–86.

    Article  PubMed  Google Scholar 

  38. Pérez-Pereira, M. (2014). Contrasting views on the pragmatic abilities of blind children. Enfance, 1, 73–88.

    Article  Google Scholar 

  39. Pérez-Pereira, M., & Castro, J. (1992). Pragmatic functions of blind and sighted children’s language: A twin case study. First Language, 12, 17–37.

    Article  Google Scholar 

  40. R Core Team. (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  41. Reilly, J., Peele, J. E., & Grossman, M. (2007). A unitary semantics account of reverse concreteness effects in semantic dementia. Brain and Language, 103, 248–249.

    Article  Google Scholar 

  42. Röder, B., & Rösler, F. (2004). Kompensatorische Plastizität bei blinden Menschen. Was Blinde über die Adaptivität des Gehirns verraten. Zeitschrift für Neuropsychologie, 15(4), 243–264.

    Article  Google Scholar 

  43. Samson, D., & Pillon, A. (2003). Concreteness effects in lexical tasks. Access to a mental image? Brain and Language, 87, 25–26.

    Article  Google Scholar 

  44. Schwanenflugel, P. J. (1991). Why are abstract concepts hard to understand. In P. J. Schwanenflugel (Ed.), The psychology of word meanings (pp. 223–250). Hillsdale: Lawrence Erlbaum Associates Publishers.

    Google Scholar 

  45. Schwanenflugel, P. J., & Akin, C. E. (1993). Developmental trends in lexical decision for abstract and concrete words. Reading Research Report, 1, 1–18.

    Google Scholar 

  46. Schwanenflugel, P. J., Harnishfeger, K. K., & Stowe, R. W. (1988). Context availability and lexical decisions for abstract and concrete words. Journal of Memory and Language, 27, 499–520.

    Article  Google Scholar 

  47. Schwanenflugel, P. J., & Shoben, E. J. (1983). Differential context effects in the comprehension of abstract and concrete verbal materials. Journal of Experimental Psychology: Learning, Memory and Cognition, 9(1), 82–102.

    Google Scholar 

  48. Snefjella, B., & Kuperman, V. (2016). It’s all in the delivery: Effects of context valence, arousal, and concreteness on visual word processing. Cognition, 156, 135–146.

    Article  PubMed  Google Scholar 

  49. Vigliocco, G., Kousta, S.-T., Della Rosa, P. A., Vinson, D. P., Tettamanti, M., & Devlin, J. T., et al. (2013). The neural representation of abstract words: The role of emotion. Cerebral Cortex, 24, 1767–1777.

  50. Warrington, E., & Shallice, T. (1984). Categoric specific semantic impairments. Brain, 107, 829–853.

    Article  PubMed  Google Scholar 

  51. Wiemer-Hastings, K., Krug, J., & Xu, X. (2001). Imagery, context availability, contextual constraint, and abstractness. In: Paper presented at the 23rd Annual Conference Cognitive Science Society, Mahwah.

  52. Xiao, X., Zhao, D., Zhang, Q., & Guo, C. (2012). Retrieval of concrete words involves more conctextual information than abstract words: Multiple components for the concreteness effect. Brain & Language, 120, 251–258.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Judith Papadopoulos.

Appendix

Appendix

See Table 2.

Table 2 Test items

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Papadopoulos, J., Domahs, F. & Kauschke, C. The Role of Sensory Perception, Emotionality and Lifeworld in Auditory Word Processing: Evidence from Congenital Blindness and Synesthesia. J Psycholinguist Res 46, 1597–1623 (2017). https://doi.org/10.1007/s10936-017-9511-1

Download citation

Keywords

  • Abstractness
  • Word processing
  • Auditory lexical decision
  • Synesthesia
  • Blindness
  • Lifeworld
  • Emotionality
  • Embodiment