Journal of Psycholinguistic Research

, Volume 46, Issue 2, pp 311–328 | Cite as

Disentangling Linguistic Modality Effects in Semantic Processing

  • Mara MoitaEmail author
  • Maria Vânia Nunes


Sensory systems are essential for perceiving and conceptualizing our semantic knowledge about the world and the way we interact with it. Despite studies reporting neural changes to compensate for the absence of a given sensory modality, studies focusing on the assessment of semantic processing reveal poor performances by deaf individuals when compared with hearing individuals. However, the majority of those studies were not performed in the linguistic modality considered the most adequate to their sensory capabilities (i.e., sign language). Therefore, this exploratory study was developed focusing on linguistic modality effects during semantic retrieval in deaf individuals in comparison with their hearing peers through a category fluency task. Results show a difference in performance between the two linguistic modalities by deaf individuals as well as in the type of linguistic clusters most chosen by participants, suggesting a complex clustering tendency by deaf individuals.


Sign Language Semantic Processing Semantic Performance Semantic Knowledge Semantic Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Barner, D., Li, P., & Snedeker, J. (2010). Words as windows to thought: The case of object representation. Current Directions in Psychological Science, 19(3), 195–200.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Batting, W. F., & Montague, W. E. (1969). Category forms for verbal items in 56 categories: A replication and extension of the Connecticut category norms. Journal of Experimental Psychology Monograph, 80(3), 1–46.CrossRefGoogle Scholar
  3. Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebal Cortex, 19(12), 2767–2796.CrossRefGoogle Scholar
  4. Brentari, D. (1998). A prosodic model of sign language phonology. Cambridge, MA: MIT Press.Google Scholar
  5. Chao, L. L., Haxby, J. V., & Martin, A. (1999). Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects. Nature Neuroscience, 2(10), 913–919.CrossRefPubMedGoogle Scholar
  6. Clark, E. V. (2003). Language and representations. In D. Gentner & S. E. Goldin-Meadow (Eds.), Advances in the investigation of language and thought (pp. 17–24). Cambridge, MA: MIT/Bradford.Google Scholar
  7. Coltheart, M., Inglis, L., Cupples, L., Michie, P., Bates, A., & Budd, B. (1998). A semantic subsystem of visual attributes. Neurocase: The Neural Basis of Cognition, 4(4–5), 353–370.CrossRefGoogle Scholar
  8. Courtin, C. (1997). Does sign language provide deaf with an abstraction advantage? Evidence from a categorization task. Journal of Deaf Studies and Deaf Education, 2(3), 161–171.CrossRefPubMedGoogle Scholar
  9. Emmorey, K., & Corina, D. (1990). Lexical recognition in sign language: Effects of phonetic structure and morphology. Perceptual and Motor Skulls, 71, 1227–1252.CrossRefGoogle Scholar
  10. Freel, B. L., Clark, M. D., Anderson, M. L., Gilbert, G. L., Musyoka, M. M., & Hauser, P. C. (2011). Deaf individuals’ bilingual abilities: American Sign Language proficiency, reading skills, and family characteristics. Psychology, 2, 18–23.CrossRefGoogle Scholar
  11. Gainotti, G. (2000). What the locus of brain lesion tells us about the nature of the cognitive defect underlying category-specific disorders: A review. Cortex, 36, 539–559.CrossRefPubMedGoogle Scholar
  12. Grosjean, F. (1981). Sign and word recognition: A first comparison. Sign Language Studies, 32, 195–219.Google Scholar
  13. Grosjean, F. (2010). Bilingualism, bilculturalism, and deafness. International Journal of Bilingual Education and Bilingualism, 13(2), 133–145.CrossRefGoogle Scholar
  14. Imai, M., & Gentner, D. (1997). A crosslinguistic study of early word meaning: Universal ontology and linguistic influence. Cognition, 62, 169–200.CrossRefPubMedGoogle Scholar
  15. Indefrey, P., & Levelt, W. J. M. (2000). The neural correlates of language production. In M. S. Gazzaniga (Ed.), The Cognitive Neurosciences (pp. 45–65). Cambridge, MA: MIT Press.Google Scholar
  16. Klatter-Folmer, J., van Hout, R., Kolen, R., & Verhoeven, L. (2006). Language development in deaf children’s interactions with deaf and hearing adults: A longitudinal study. Journal of Deaf Studies and Deaf Education, 11(2), 238–251.CrossRefPubMedGoogle Scholar
  17. Knoors, H. (2007). Educational responses to varying objectives of deaf parents of deaf children: A Dutch perspective. Journal of Deaf Studies and Deaf Education, 12(2), 243–253.CrossRefPubMedGoogle Scholar
  18. Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical access in speech production. Behavioral and Brain Sciences, 22(1), 1–75.PubMedGoogle Scholar
  19. Liben, L. S., Nowell, R. C., & Posnansky, C. J. (1978). Semantic and formational clustering in deaf and hearing subject’s free recall of sing. Memory and Cognition, 6(6), 599–606.CrossRefPubMedGoogle Scholar
  20. Lieber, R. (2011). A lexical semantic approach to compounding. In R. Leiber & P. Štekauer (Eds.), The Oxford handbook of compounding (pp. 78–104). New York, NY: Oxford University Press.CrossRefGoogle Scholar
  21. Lieberman, A. M., Borovsky, A., Hatrak, M., & Mayberry, R. I. (2015). Real-time processing of ASL signs: Delayed first language acquisition affects organization of the mental lexicon. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(4), 1130–1139.PubMedGoogle Scholar
  22. Lucy, J. (1992). Grammatical categories and cognition: A case study of the linguistic relativity hypothesis. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  23. MacSweeney, M., Grossi, G., & Neville, H. (2004). Semantic priming in deaf adults: An ERP study. Paper presented at cognitive neuroscience society annual meeting, San Francisco, SF.Google Scholar
  24. Mahon, B. Z., Milleville, S. C., Negri, G. A., Rumiati, R. I., Caramazza, A., & Martin, Alex. (2007). Action-related properties shape object representations in the ventral stream. Neuron, 55(3), 507–520.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Marshall, C. R., Rowley, K., & Atkison, J. (2014). Modality-dependent and -independent factors in the organisation of the signed language lexicon: Insights from semantic and phonological fluency tasks in BSL. Journal of Psycholinguistics Research, 43(5), 587–610.Google Scholar
  26. Martin, A., Ungerleider, L. G., & Haxby, J. V. (2007). Category specificity and the brain: The sensory/motor model of semantic representations of objects. In Michael S. Gazzaniga (Ed.), The new cognitive neuroscience (2nd ed., pp. 1024–1036). Cambridge, MA: MIT Press.Google Scholar
  27. Martin, A., Wiggs, C. L., Ungerleider, L. G., & Haxby, J. (1996). Neural correlates of category-specific knowledge. Nature, 379, 649–652.CrossRefPubMedGoogle Scholar
  28. Mateus, M. H., & d’Andrade, E. (2000). The phonology of Portuguese. Oxford: Oxford Univesity Press.Google Scholar
  29. McCarthy, R. A., & Warrignton, E. K. (1988). Evidence for modality-specific meaning systems in the brain. Nature, 334, 428–430.CrossRefPubMedGoogle Scholar
  30. McEvoy, C., Marschark, M., & Nelson, D. L. (1999). Comparing the mental lexicons of deaf and hearing individuals. Journal of Educational Psychology, 91(2), 312–320.CrossRefGoogle Scholar
  31. Moita, M., Carmo, P., Ferreira, J. P., & Mineiro, A. (2012). A preliminary description and analysis of the phonology of Portuguese Sign Language for computational modulation purposes. Poster session presented at the Formal and Experimental Advances in Sign Language Theory (FEAST), Warsaw, Poland.Google Scholar
  32. Moita, M., Carmo, P., Carmo, H., Ferreira, J. P., & Mineiro, A. (2011). Estudos preliminares para a modelização de um avatar para a LGP: os descritores fonológicos. Cadernos de Saúde, 1(4), 1–15.Google Scholar
  33. Neville, H. J., & Bavelier, D. (2002). Human brain plasticity: Evidence from sensory deprivation and altered language experience. Progress in Brain Research, 138, 177–188.CrossRefPubMedGoogle Scholar
  34. Neville, H. J., Bavelier, D., Corina, D., Rauschecker, J., Karni, A., Lalwani, A., et al. (1998). Cerebral organization for language in deaf and hearing subjects: Biological constraints and effects of experience. Proceedings of the National Academy of Sciences of The United States of America., 95(3), 922–929.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Noppeney, U., Price, C. J., Penny, W. D., & Friston, K. J. (2006). Two distinct neural mechanisms for category-selective responses. Cerebral Cortex, 16(3), 437–445.CrossRefPubMedGoogle Scholar
  36. Ormel, E. A., Gijsel, M. A. R., Hermans, D., Bosman, A. M. T., Knoors, H., & Verhoeven, L. (2010). Semantic categorization: A comparison between deaf and hearing children. Journal of Communication Disorders, 43(5), 347–360.CrossRefPubMedGoogle Scholar
  37. Parasnis, I. (1998). Cultural and Language Diversity and the Deaf Experience. Cambridge: Cambridge University Press.Google Scholar
  38. Perfetti, C. A., & Sandak, R. (2000). Reading optimally builds on spoken language: Implications for deaf readers. Journal of Deaf Studies and Deaf Education, 5(1), 32–50.CrossRefPubMedGoogle Scholar
  39. Pinto, A. C. (1992). Categorização de itens verbais: Medidas de frequência de produção e de tipicidade. Porto: relato técnico de Centro de Psicologia Cognitiva da FPCE da UP.Google Scholar
  40. Rahman, R. A., & Sommer, W. (2003). Does phonological encoding in speech production always follow the retrieval of semantic knowledge? Electrophysiological evidence for parallel processing. Cognitive Brain Research, 16(3), 372–382.CrossRefPubMedGoogle Scholar
  41. Sandler, W. (2008). The syllable in sign language: Considering the other natural language modality. In B. Davis & K. Zajdo (Eds.), Ontogeny and phylogeny of syllable organization, festchrift in honor of Peter MacNeilage (pp. 379–498). New York, NY: Taylor Francis.Google Scholar
  42. Sandler, W. (2012). The phonological organization of sings languages. Language and Linguistics Compass, 6(3), 162–167.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Sandler, W., & Lillo-Martin, D. (2006). Sign language and linguistic universals. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  44. Simanova, I., van Gerven, M., Oostenveld, R., & Hagoort, P. (2010). Identifying object categories from event-related EEG: Toward decoding of conceptual representations. PLoS One, 5(12), 144–165.CrossRefGoogle Scholar
  45. Stokoe, W. C. (1960). Sign Language structure: An outline of visual communication system of the American deaf. Journal of Deaf Studies and Deaf Education, 10(1), 3–37.CrossRefGoogle Scholar
  46. Tweney, R. D., Hoemann, H. W., & Andrews, C. E. (1975). Semantic organization in deaf and hearing subjects. Jounal of Psychololinguistic Research, 4(1), 61–73.CrossRefGoogle Scholar
  47. Unsworth, S. J., Sears, C. R., & Pexman, P. M. (2003). Culture influences on categorization processes. Journal of Cross-Cultural Differences, 36(6), 626–688.Google Scholar
  48. Vletsi, E., Stavrakaki, S., Liapi, I. H., Marshall, C. R., & Grouisos, G. (2012). Assessing verbal fluency in Greek sign language. In Gavriilidou, Z., Efthymiou, A., Thomadaki, E. & P. Kambaki-Vougioukli (Eds.), Proceedings of the 10th international conference of Greek linguistics. Komotini, Greece: Democritus University.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Instituto de Ciências da SaúdeUniversidade Católica PortuguesaLisbonPortugal

Personalised recommendations