Skip to main content
Log in

Coal tar-pitch derived porous carbons with zinc oxide nanoparticles as a dual-functional template and activating agent for high-performance supercapacitors

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The development of advanced carbon materials is indispensable for high-performance supercapacitors. Herein, we report the direct pyrolysis of waste coal-tar pitch (CTP) with ZnO nanoparticles (Zn NPs) to produce hierarchical porous carbon materials (HPCs). The CTP served as a carbon source, and the embedded ZnO NPs as a simultaneous templating and activating agent for HPCs. At an optimum temperature of 800 °C, the produced HPCs (HPC-800) realized an optimal specific surface area (1267 m2 g-1) and pore volume of 1.71 cm3 g-1, enabling the devised capacitor to exhibit a specific capacitance of 172 F g-1 at a current density of 0.1 A g-1 in 6 M KOH electrolyte and a capacitance retention of 81% (0.1–30 A g-1). The as-symmetrical device could deliver an energy density of 8.3 Wh∙kg-1 at a high-power density of 50.0 W∙kg-1 and retained energy density of 4.9 Wh∙kg-1 at a power density of 11.9 kW∙kg-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data will be provided on reasonable request to corresponding authors.

References

  1. Y. Jiang, Z. He, X. Cui, Z. Liu, J. Wan, Y. Liu, Ma in hierarchical porous carbon derived from coal tar pitch by one step carbonization and activation combined with a CaO template for supercapacitors. New. J. Chem. 46, 6078–6090 (2022)

    Article  CAS  Google Scholar 

  2. Z. Gan, J. Yin, X. Xu, Y. Cheng, A. n. Yu in Nanostructure and advanced energy storage: elaborate material designs lead to high-rate pseudocapacitive ion storage. ACS Nano. 16, 5131–5152 (2022)

    Article  CAS  PubMed  Google Scholar 

  3. M.E. Şahin, F. Blaabjerg, Sangwongwanich in a comprehensive review on supercapacitor applications and developments. Energies. 15, 674 (2022)

    Article  Google Scholar 

  4. K. Sheoran, V.K. Thakur, S.S. J., M. T. P. Siwal in Synthesis and overview of carbon-based materials for high performance energy storage application: A review. Mater. Today: Proc 2022, 56, 9–17

  5. Y. Ma, C. Hou, H. Kimura, X. Xie, H. Jiang, X. Sun, X. Yang, Y. Zhang, Du in recent advances in the application of carbon-based electrode materials for high-performance zinc ion capacitors: a mini review. Adv. Compos. Mater. 6, 1–17 (2023)

    Google Scholar 

  6. R. Kumar, E. Joanni, S. Sahoo, J.-J. Shim, W.K. Tan, A. Matsuda, Singh in an overview of recent progress in nanostructured carbon-based supercapacitor electrodes: from zero to bi-dimensional materials. Carbon. 193, 298–338 (2022)

    Article  CAS  Google Scholar 

  7. M. Akdemir, D.E. Karakaş, M. Kaya in Synthesis of a dual-functionalized carbon‐based material as catalyst and supercapacitor for efficient hydrogen production and energy storage: Pd‐supported pomegranate peel. J. Energy Storage 2022, 4, e284

  8. C.-. Zhu, Y.-. Ye, X. Guo, N. C. M. Cheng in Design and synthesis of carbon-based nanomaterials for electrochemical energy storage. New. Carbon Mater. 37, 59–92 (2022)

    Article  CAS  Google Scholar 

  9. S. Yuan, Q. Lai, X. Duan, Q. J. J. o. E. S. Wang in Carbon-based materials as anode materials for lithium-ion batteries and lithium-ion capacitors: A review. 2023, 61, 106716

  10. X. Zhang, R. Han, Y. Liu, H. Li, W. Shi, X. Yan, X. Zhao, Y. Li, J. Liu in Porous and graphitic structure optimization of biomass-based carbon materials from 0D to 3D for supercapacitors: a review. J. Energy Storage. 460, 141607 (2023)

    CAS  Google Scholar 

  11. X. Zhang, B. Sun, X. Fan, P. Liang, G. Zhao, B.K. Saikia, F. Wei in hierarchical porous carbon derived from coal and biomass for high performance supercapacitors. Fuel. 311, 122552 (2022)

    Article  CAS  Google Scholar 

  12. H. Lin, Z. Tan, J. Yang, R. Mo, Y. Liang, M. Zheng, H. Hu, H. Dong, X. Liu, o. E. S. Liu in highly porous carbon material from polycyclodextrin for high-performance supercapacitor electrode. J. Energy Storage. 53, 105036 (2022)

    Article  Google Scholar 

  13. Q. Xiong, B. Liu, Y. Liu, P. Wang, H. Cheng, H. Li, Z. Lu, N. R. Yang in In-situ self-templating synthesis of 3D hierarchical porous carbons from oxygen-bridged porous organic polymers for high-performance supercapacitors. Nano Res. 15, 7759–7768 (2022)

    Article  CAS  Google Scholar 

  14. Q. Lu, T. Zhang, B. He, F. Xu, S. Liu, Q. Ye, T. I. Zhou in enhanced lubricity and anti-wear performance of zwitterionic polymer-modified N-enriched porous carbon nanosheets as water-based lubricant additive. Carbon. 167, 107421 (2022)

    CAS  Google Scholar 

  15. G. Han, J. Jia, Q. Liu, G. Huang, B. Xing, C. Zhang, Cao in Template-activated bifunctional soluble salt ZnCl2 assisted synthesis of coal-based hierarchical porous carbon for high-performance supercapacitors. Carbon. 186, 380–390 (2022)

    Article  CAS  Google Scholar 

  16. G. Jiang, R.A. Senthil, Y. Sun, T.R. Kumar, Pan in recent progress on porous carbon and its derivatives from plants as advanced electrode materials for supercapacitors Journal of Power sources. J. Power Sources. 520, 230886 (2022)

    Article  CAS  Google Scholar 

  17. Y. Yin, Q. Liu, Y. Zhao, T. Chen, J. Wang, L. Gui, Lu in recent progress and future directions of Biomass-Derived Hierarchical Porous Carbon: Designing, Preparation, and Supercapacitor Applications. Energy Fuels. 37, 3523–3554 (2023)

    Article  CAS  Google Scholar 

  18. R. Yang, J. Zhou, L. Wu, Ping in Fabrication of developed porous carbon derived from bluecoke powder by microwave-assisted KOH activation for simulative organic wastewater treatment. Dia Rel Mater. 124, 108929 (2022)

    Article  CAS  Google Scholar 

  19. Q. Zhang, B. Yan, L. Feng, J. Zheng, B. You, J. Chen, X. Zhao, C. Zhang, S. Jiang, S. He in Progress on organic potassium salts involved synthesis of porous carbon nanomaterials: Microstructure engineering for advanced supercapacitors Nanoscale. 2022

  20. X. Zheng, J. Luo, W. Lv, D.W. Wang, Yang in two-dimensional porous carbon: synthesis and ion‐transport properties. Adv. Mater. 27, 5388–5395 (2015)

    Article  CAS  PubMed  Google Scholar 

  21. H.-M. Lee, H.-R. Kang, K.-H. An, H.-G. Kim, Kim in comparative studies of porous carbon nanofibers by various activation methods. Carbon Lett. 14, 180–185 (2013)

    Article  Google Scholar 

  22. X. Zhang, C. Jiang, H. Li, X. Gan, W. Shi, Y. Liu, X. Yan, X. Zhao, J. o. C. Liu, I. Science in rational design of activated graphitic carbon spheres with optimized ion and electron transfer channels for zinc-ion hybrid capacitors. Carbon. 651, 211–220 (2023)

    CAS  Google Scholar 

  23. L.-F. Cai, J.-M. Zhan, J. Liang, L. Yang, Yin in structural control of a novel hierarchical porous carbon material and its adsorption properties. Sci. Rep. 12, 3118 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. X. Zhang, B. Liu, X. Yan, X. Zhao, Y. Zhang, Y. Wei, Q.J.M. Cao, Materials in design and structure optimization of 3D porous graphitic carbon nanosheets for high-performance supercapacitor. Mic Meso Mat. 309, 110580 (2020)

    Article  CAS  Google Scholar 

  25. B. Petrova, T. Budinova, N. Petrov, M. Yardim, E. Ekinci, M. Razvigorova in Effect of different oxidation treatments on the chemical structure and properties of commercial coal tar pitch Carbon. 2005, 43, 261–267

  26. J.R. Kershaw, Black in structural characterization of coal-tar and petroleum pitches. Energy Fuels. 7, 420–425 (1993)

    Article  CAS  Google Scholar 

  27. L. Wang, Y. Yang, Y. Ou, P. Tang, C. Liu, X. Zhang, Q. Zhong, Q. Li, T. Jiang in Preparation of formed coke product as a coke substitute using a solid waste fuel: Trimethylbenzene improvement on coal tar pitch Fuel. 2023, 346, 128275

  28. M. Yu, Y. Ma, W. Lu, X. Ao, Q. Chen in Raffinate coal tar pitch-derived micro/mesoporous carbon foams for removal of Cadmium ions. J. Anal. Appl. Pyrol. 2022, 105756

  29. Q. Hou, B. Xing, H. Guo, W. Kang, G. Yi, S. Cheng, C. Zhang, Zhang in Application of coal-based carbon dots for photocatalysis and energy storage: a minireview. New. J. Chem. 46, 17102–17113 (2022)

    Article  CAS  Google Scholar 

  30. S. Wei, X. Deng, W. Li, K. Liu, J. Wang, H. Zhao, Wang in recyclable molten-salt-assisted synthesis of N-doped porous carbon nanosheets from coal tar pitch for high performance sodium batteries. J. Chem. Eng. 455, 140540 (2023)

    Article  CAS  Google Scholar 

  31. Z. Wang, Z. Xu, Y. Guan, H. Zhu, G. Yuan, Z. Dong, X. Li, Q. Zhang, Cong in Preparation of pitch-based activated carbon fibers with high specific surface area and excellent adsorption properties Research on Chemical intermediates. Diam. Relat. Mater. 48, 1733–1746 (2022)

    CAS  Google Scholar 

  32. W. Wei, Z. Chen, Y. Zhang, J. Chen, L. Wan, C. Du, M. Xie, J. o. E. C. Guo in full-faradaic-active nitrogen species doping enables high-energy-density carbon-based supercapacitor. J. Ener Chem. 48, 277–284 (2020)

    Article  Google Scholar 

  33. Z. Deng, C. Ma, S. Yan, K. Dong, Q. Liu, Y. Luo, Y. Liu, J. Du, X. Sun, o. M. C. A. Zheng in one-dimensional conductive metal–organic framework nanorods: a highly selective electrocatalyst for the oxygen reduction to hydrogen peroxide. J. Mater. Chem. A 9, 20345–20349 (2021)

    Article  CAS  Google Scholar 

  34. S. Zhang, Y. Yu, M. Xie, C. Du, J. Chen, L. Wan, Zhang in clean production of N, O-doped activated carbon by water vapor carbonization/activation of expired coffee for high-volumetric supercapacitor. Appl. Sur Sci. 589, 153011 (2022)

    Article  CAS  Google Scholar 

  35. M. Xie, R. Xiao, Y. Yu, Y. Zhang, C. Du, L. Wan, J. o. E. S. Chen in Superhydrophilicity and ultrahigh-rate supercapacitor performances enabled by mesoporous carbon doped with conjugated hydroxyl. J. Energy Storage. 43, 103296 (2021)

    Article  Google Scholar 

  36. Y. Yao, R. Zhou, Y. Yu, J. Chen, C. Du, Y. Zhang, T. Long, L. Wan, Q. Wang, C. E. J. Xie in Solvent-freely polymerizing catechol and paraformaldehyde to nitrogen-rich carbon for high-volumetric-performance supercapacitor. J. Chem. Eng. 472, 144905 (2023)

    Article  CAS  Google Scholar 

  37. M. Xie, H. Meng, J. Chen, Y. Zhang, C. Du, L. Wan, A. E. M. Chen in High-volumetric supercapacitor performance of ordered mesoporous carbon electrodes enabled by the faradaic-active nitrogen doping and decrease of microporosity. ACS Appl. Energy Mater. 4, 1840–1850 (2021)

    Article  CAS  Google Scholar 

  38. Z. Wang, Q. Cao, F. Guo, Y. Yan, Q.J.D. Cao, Materials in Preparation and electrochemical properties of low-temperature activated porous carbon from coal tar pitch. DRM. 135, 109855 (2023)

    CAS  Google Scholar 

  39. C. Ma, J. Bai, X. Hu, Z. Jiang, J. o. E. S. Wang in Nitrogen-doped porous carbons from polyacrylonitrile fiber as effective CO2 adsorbents. J. Environ. Sci. 125, 533–543 (2023)

    Article  CAS  Google Scholar 

  40. C. Zhong, Q. Cao, X. Xie, S. Gong, C. Zhou, Wang in Preparation of pitch-based carbon materials using a template and an orthogonal array design for super capacitors. Mic Nano Lett. 9, 927–931 (2014)

    Article  Google Scholar 

  41. M. Demir, Doguscu in Preparation of porous carbons using NaOH, K2CO3, Na2CO3 and Na2S2O3 activating agents and their supercapacitor application: a comparative study. Chem. Select. 7, e202104295 (2022)

    CAS  Google Scholar 

  42. L. Wang, J. Wu, Y. Gao, L. Sha, H. Ma, X. Li, J.J.D. Zhou, R. materials in H3PO4-assisted preparation of precursor-derived porous carbon: construction of precursor/precursor-derived porous carbon texture properties relationship. DRM. 119, 108596 (2021)

    CAS  Google Scholar 

  43. F. Suarez-Garcia, J. Paredes, M. Perez-Mendoza, J. Nauroy, A. Martinez-Alonso, J. Tascon in Porosity development in carbon nanofibers by physical and chemical activation, Vol. 17 (.^.:, Editor ), Trans Tech Publ, City, J. Nano. R 2012, pp.211–227

  44. P. Strubel, S. Thieme, T. Biemelt, A. Helmer, M. Oschatz, J. Brückner, H. Althues, A. F. M. Kaskel in ZnO hard templating for synthesis of hierarchical porous carbons with tailored porosity and high performance in lithium-sulfur battery. Adv. Funct. Mater. 25, 287–297 (2015)

    Article  CAS  Google Scholar 

  45. X. He, X. Li, H. Ma, J. Han, H. Zhang, C. Yu, N. Xiao, J. o. P. S. Qiu in ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials. J. Power Sources. 340, 183–191 (2017)

    Article  CAS  Google Scholar 

  46. Q. Wang, J. Yan, Y. Wang, T. Wei, M. Zhang, X. Jing, Z. Fan in Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors Carbon. 2014, 67, 119–127

  47. Z. Song, D. Zhu, D. Xue, J. Yan, X. Chai, W. Xiong, Z. Wang, Y. Lv, T. Cao, Liu in Nitrogen-enriched hollow porous carbon nanospheres with tailored morphology and microstructure for all-solid-state symmetric supercapacitors. ACS Appl. Ener Mater. 1, 4293–4303 (2018)

    Article  CAS  Google Scholar 

  48. C. Wang, M.J. O’Connell, C.K. Chan, Interfaces in facile one-pot synthesis of highly porous carbon foams for high-performance supercapacitors using template-free direct pyrolysis. ACS Appl. Mater. 7, 8952–8960 (2015)

    Article  CAS  Google Scholar 

  49. R. Shi, C. Han, H. Li, L. Xu, T. Zhang, J. Li, Z. Lin, C.-P. Wong, F. Kang, Li in NaCl-templated synthesis of hierarchical porous carbon with extremely large specific surface area and improved graphitization degree for high energy density lithium ion capacitors. J. Mat. Chem. A 6, 17057–17066 (2018)

    Article  CAS  Google Scholar 

  50. F. Wei, H.-f. Zhang, X.-j. He, H. Ma, S.-a. Dong, X.-y. Xie in Synthesis of porous carbons from coal tar pitch for high-performance supercapacitors. New. Carbon Mater. 34, 132–139 (2019)

    Article  CAS  Google Scholar 

  51. Y. Mao, H. Duan, B. Xu, L. Zhang, Y. Hu, C. Zhao, Z. Wang, L. Chen, Yang in Lithium storage in nitrogen-rich mesoporous carbon materials. Energy Environ. Sci. 5, 7950–7955 (2012)

    Article  CAS  Google Scholar 

  52. Q.-Q. Zhuang, J.-P. Cao, Z.-Q. Hao, X. Wan, Y. Wu, Z.-H. Ni, X. Zhao, Wei in Oxygen-rich hierarchical porous carbon derived from coal tar pitch for superior electric double layer capacitor application. Int. J. Electrochem. Sci. 13, 8440–8453 (2018)

    Article  CAS  Google Scholar 

  53. M. Sevilla, N. Díez, A. B. Fuertes in More sustainable chemical activation strategies for the production of porous carbons ChemSusChem. 2021, 14, 94–117

  54. M. Enterría, F. Suárez-García, A. Martínez-Alonso, J.J.M. Tascón, Materials in synthesis of ordered micro–mesoporous carbons by activation of SBA-15 carbon replicas. Microporous Mesoporous Mater. 151, 390–396 (2012)

    Article  Google Scholar 

  55. H. Wang, Q. Gao, J.J.M. Hu, Materials in Preparation of porous doped carbons and the high performance in electrochemical capacitors. Microporous Mesoporous Mater. 131, 89–96 (2010)

    Article  CAS  Google Scholar 

  56. B. Xu, H. Wang, Yu in hierarchical porous carbon prepared using nano-ZnO as template and activation agent for ultrahigh power supercapacitors. Chem. Commun. 52, 11512–11515 (2016)

    Article  Google Scholar 

  57. S. Yu, H. Wang, C. Hu, Q. Zhu, N. Qiao, Xu in Facile synthesis of nitrogen-doped, hierarchical porous carbons with a high surface area: the activation effect of a nano-ZnO template. J. Mater. Chem. A 4, 16341–16348 (2016)

    Article  CAS  Google Scholar 

  58. H. Wang, S. Yu, Xu in hierarchical porous carbon materials prepared using nano-ZnO as a template and activation agent for ultrahigh power supercapacitors. Chem. Comm. 52, 11512–11515 (2016)

    Article  CAS  PubMed  Google Scholar 

  59. T. Koitaya, Y. Shiozawa, Y. Yoshikura, K. Mukai, S. Yoshimoto, S. Torii, F. Muttaqien, Y. Hamamoto, K. Inagaki, Morikawa in Electronic states and growth modes of zn atoms deposited on Cu (111) studied by XPS, UPS and DFT. Surf. Sci. 663, 1–10 (2017)

    Article  CAS  Google Scholar 

  60. X.-h. Zhang, X.-y. Gan, B.-s. Liu, X.-y. Yan, X.-x. J. N. C. M. Zhao in an interfacial self-assembly strategy to fabricate graphitic hollow porous carbon spheres for supercapacitor electrodes. New. Carbon Mater. 36, 594–605 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities (buctrc202141).

Funding

This work was financially supported by the Fundamental Research Funds for the Central Universities (buctrc202141).

Author information

Authors and Affiliations

Authors

Contributions

Z. A; design, data collection, analysis, and interpretation of results, J.K; manuscript preparation and revision, R.A.S; editing, revision of manuscript, N.S; supervision, editing and revision, Z.Y; editing, interpretation of results, B.X; supervision and provision of funds.

Corresponding authors

Correspondence to Razium Ali Soomro or Bin Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, Z., Kumar, J., Soomro, R.A. et al. Coal tar-pitch derived porous carbons with zinc oxide nanoparticles as a dual-functional template and activating agent for high-performance supercapacitors. J Porous Mater (2024). https://doi.org/10.1007/s10934-024-01629-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10934-024-01629-1

Keywords

Navigation