Skip to main content
Log in

Catalytic oxidation of lignin model non-phenolic monomer Veratryl alcohol over iron containing mesoporous SBA-1

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Mesoporous solids possessing open framework, tunable pores, high surface area, and considerable thermal stability provide an ideal environment to be employed as solid catalysts, host material, adsorbent, etc. Herein, we report the study about the insertion of iron into the mesoporous silicate framework of SBA-1 and utilize the material as a potential heterogeneous catalyst for the selective oxidation of lignin model non-phenolic monomer, i.e. veratryl alcohol under mild reaction conditions. Veratraldehyde and veratric acid were obtained as the oxidation products. FeSBA-1 in combination with hydrogen peroxide was selective towards veratraldehyde, on the other hand, veratric acid was selectively obtained when tert-butyl hydroperoxide was used as the oxidant under identical reaction conditions. X-ray diffraction pattern of FeSBA-1 revealed the formation of a cubic, three-dimensional SBA-1 structure. HRTEM shows uniform and ordered pore structure having dimensions of ∽ 2.3 ̶ 3.4 nm and wall thickness of ∽ 3.5 nm. FESEM showed regular-shaped FeSBA-1 with spherical morphology having a dimension of ∽ 1.6 μm. BET surface area of 1337 m2 g−1 and pore diameter of ∽ 19 Å was determined by N2 adsorption-desorption measurements. The mesoporous nature of FeSBA-1 was further supported by TGA studies. EPR studies indicated the presence of Fe(III) both in tetrahedral and octahedral coordination within the framework of FeSBA-1. DRUV-VIS studies revealed the presence of Fe(III) in both framework and extra-framework locations of the SBA-1 silicate network. IR studies supported the linkage of Fe–O–Si within FeSBA-1. The absence of the Fe2O3 phase was evidenced by Raman studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature. 359, 710 (1992)

    Article  CAS  Google Scholar 

  2. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, J. Am. Chem. Soc. 114, 10834 (1992)

    Article  CAS  Google Scholar 

  3. X. Zhao, X. Wang, J. Mol. Catal. 261, 225 (2007)

    Article  CAS  Google Scholar 

  4. P.P. Neethu, A. Sreenavya, A. Sakthivel, Appl. Catal. A: Gen. 623, 118292 (2021)

    Article  CAS  Google Scholar 

  5. W. Tanglumlert, T. Imae, T.J. White, S. Wongkasemjit, Mater. Lett. 62, 4545 (2008)

    Article  CAS  Google Scholar 

  6. D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120, 6024 (1998)

    Article  CAS  Google Scholar 

  7. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science. 279, 548 (1998)

    Article  CAS  PubMed  Google Scholar 

  8. S. Che, Y. Sakamoto, O. Terasaki, T. Tatsumi, Chem. Lett. 31, 214 (2002)

    Article  Google Scholar 

  9. O.A. Anunziata, A.R. Beltramone, M.L. Martinez, L.L. Belon, J. Colloid Interface Sci. 315, 184 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. S. Che, Y. Sakamoto, O. Terasaki, T. Tatsumi, Chem. Mater. 13, 2237 (2001)

    Article  CAS  Google Scholar 

  11. N. Parida, S.K. Badamali, J. Porous Mater. 29, 161 (2022)

    Article  CAS  Google Scholar 

  12. A. Vinu, J. Dedecek, V. Murugesan, M. Hartmann, Chem. Mater. 14, 2433 (2002)

    Article  CAS  Google Scholar 

  13. A. Vinu, T. Krithiga, V.V. Balasubramanian, A. Asthana, P. Srinivasu, T. Mori, K. Ariga, G. Ramanath, P.G. Ganesan, J. Phys. Chem. 110, 11924 (2006)

    Article  CAS  Google Scholar 

  14. W. Tanglumlert, T. Imae, T.J. White, S. Wongkasemjit, Catal. Commun. 10, 1070 (2009)

    Article  CAS  Google Scholar 

  15. S.K. Badamali, R. Luque, J.H. Clark, S.W. Breeden, Catal. Commun. 12, 993 (2011)

    Article  CAS  Google Scholar 

  16. H.R. Bjorsvik, L. Ligelori, Org. Proc. Res. Dev. 6, 279 (2002)

  17. K. Kervinen, P. Lahtinen, T. Repo, M. Svahn, M Leskela Catal. Today. 75, 183 (2002)

    Article  CAS  Google Scholar 

  18. K. Kervinen, H. Korpi, M. Leskela, T. Repo, J. Mol. Catal. A: Chem. 203, 9 (2003)

    Article  CAS  Google Scholar 

  19. H. Fan, Y. Yang, J. Song, G. Ding, C. Wu, G. Yang, B Han Green. Chem. 16, 600 (2014)

    Article  CAS  Google Scholar 

  20. X. Wu, S. Guo, J. Zhang Chem. Commun. 51, 6318 (2015)

    Article  CAS  Google Scholar 

  21. S.D. Haemmerli, H.E. Schoemaker, H.W. Schmidt, M S Leisola Febs Lett. 220, 149 (1987)

    Article  CAS  Google Scholar 

  22. V.R. Mate, M. Shirai, C.V. Rode, Catal. Commun. 33, 66 (2013)

    Article  CAS  Google Scholar 

  23. R. Yadav, T. Baskaran, A. Kaiprathu, M. Ahmed, S.V. Bhosale, S. Joseph, A. Sakthivel, A. Vinu, Chem. Asian J. 15, 2588 (2020)

    Article  CAS  PubMed  Google Scholar 

  24. D.H. Lin, G. Coudarier, J.C. Vedrine, Stud. Surf. Sci. Catal. 48, 1431 (1989)

    Article  Google Scholar 

  25. S. Bordiga, R. Buzzoni, F. Geobaldo, C. Lamberti, E. Giamello, A. Zecchina, G. Leofanti, G. Petrini, G. Tozzola, G. Vlaic, J. Catal. 158, 486 (1996)

    Article  CAS  Google Scholar 

  26. R. Szostak, Clay Miner. 25, 244 (1989)

    Google Scholar 

  27. A.L. Dendramis, E.W. Schwinn, R.P. Sperline, J. Surf. Sci. 134, 675 (1983)

    Article  CAS  Google Scholar 

  28. K.J. Kingma, R.J. Hemley, J. Am. Mineral. 79, 269 (1994)

    CAS  Google Scholar 

  29. H. Kanno, J. Hiraishi, J. Raman Spectrosc. 12, 3 (1989)

    Google Scholar 

  30. J.D. Laat, H. Gallard, Env Sci. Technol. 33, 2726 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

Nirupama Parida thanks National Centre for Catalysis Research and IIT Madras for XRD and TEM measurements. NP, also thanks Kendrapara (Auto) College for administrative support in pursuing the doctoral work.

Author information

Authors and Affiliations

Authors

Contributions

Nirupapama Parida: Investigation, Methodology, Software, Writing original draft, data curation. Sushanta K Badamali: Conceptualization, Funding acquisition, Funding administration, Review, Editing, Formal analysis. Paresh Kumar Mohanty: MethodologySharada Shrinivas Pati: Formal analysis.

Corresponding author

Correspondence to Sushanta K. Badamali.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parida, N., Mohanty, P.K., Pati, S.S. et al. Catalytic oxidation of lignin model non-phenolic monomer Veratryl alcohol over iron containing mesoporous SBA-1. J Porous Mater (2024). https://doi.org/10.1007/s10934-024-01624-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10934-024-01624-6

Keywords

Navigation