Skip to main content
Log in

Gas-phase O-methylation of catechol with dimethyl carbonate over SBA-15-supported aluminum phosphate catalyst

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

SBA-15-supported Al2O3-P2O5 with 10 wt% Al2O3 and different P2O5 mass percentages (10Al2O3-xP2O5/SBA-15) were prepared by simple impregnation method and used for gas-phase selective O-methylation of catechol to guaiacol with dimethyl carbonate. The 10Al2O3-xP2O5/SBA-15 catalysts maintained ordered mesoporous structures, but their specific surface areas, pore volumes, and pores decreased with the addition of Al and P oxides. The addition of P2O5 decreased the strength of weak acid, but with the P2O5 content increasing, the additional pseudo-bridging bonds that are similar to amorphous silica-alumina were formed, which enhanced the acidity of weak acid. Brønsted acid sites introduced by P2O5 promoted more acid sites and lower the strength of acid sites. The basic sites increased with the increase of P2O5 content. Acidic sites are the key to control the catalytic activity, and basic sites are the key to control the catalytic selectivity. 10Al2O3-5P2O5/SBA-15 exhibited excellent catalytic activities and high selectivity to guaiacol for the O-methylation of catechol, due to the synergistic effect of acid and base sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. F. Chieregato, A. Molinari, M. Milani, M. Fendrich, M. Orlandi, A. Miotello, Colloids Surf. A 648, 17 (2022)

    Article  Google Scholar 

  2. D. Xu, J. Ren, S. Yue, X. Zou, X. Shang, X. Wang, Materials (Basel) 14, 20 (2021)

    Google Scholar 

  3. A. Hitzel, M. Pohlmann, F. Schwagele, K. Speer, W. Jira, Food Chem. 139, 1–4 (2013)

    Article  Google Scholar 

  4. Z. Wang, T. Yue, Y. Yuan, Y. Zhang, Z. Gao, R. Cai, Int. J. Food Microbiol. 338, 3 (2021)

    Article  Google Scholar 

  5. F. Chen, W. Wei, Y. Gao, Y. Wang, Z. Yan, Z. Zhang, H. Yu, G. Xu, L. Shi, J. CO2 Utilization 65, 11 (2022)

    Article  Google Scholar 

  6. M.B. Talawar, T.M. Jyothi, T. Raja, B.S. Rao, P.D. Sawant, Green Chem. 2, 6 (2000)

    Article  Google Scholar 

  7. X. Wang, J. Zhang, G. Xie, Z. Yin, J. Liu, X. Ma, Catal. Sci. Technol. 11, 22 (2021)

    Google Scholar 

  8. R. Luque, J. Manuel Campelo, T.D. Conesa, D. Luna, J.M. Marinas, A.A. Romero, New J. Chem. 30, 8 (2006)

    Article  Google Scholar 

  9. X. Zhu, X. Li, G. Liu, X. Zou, Y. Wang, M. Jia, W. Zhang, Chem. Res. Chin. Univ. 22, 4 (2006)

    Article  CAS  Google Scholar 

  10. G. Liu, L. Yang, S. Wu, M. Jia, W. Zhang, Acta Phys. Chim. Sin. 30, 6 (2014)

    Google Scholar 

  11. G. Liu, Z. Wang, M. Jia, X. Zou, X. Zhu, W. Zhang, D. Jiang, J. Phys. Chem. B 110, 34 (2006)

    Google Scholar 

  12. B. Wu, Y. Sheng, L. Zhou, R. Hong, L. Zhang, X. Ren, X. Zou, X. Shang, X. Lu, X. Wang, Catalysts 13, 1 (2023)

    CAS  Google Scholar 

  13. K. Bai, J. Hao, Y. Yang, A. Qian, Heliyon 6, 8 (2020)

    Article  Google Scholar 

  14. V. Calvino-Casilda, R.M. Martín-Aranda, Catal. Today 354, 6 (2020)

    Article  Google Scholar 

  15. Q. Li, Y. Zhou, Molecules 28, 5 (2023)

    Google Scholar 

  16. S. Song, Y. Sun, K. Yang, Y. Fo, X. Ji, H. Su, Z. Li, C. Xu, G. Huang, J. Liu, W. Song, ACS Catal. 13, 9 (2023)

    Google Scholar 

  17. P. Verma, Y. Kuwahara, K. Mori, R. Raja, H. Yamashita, Nanoscale 12, 21 (2020)

    Article  Google Scholar 

  18. S. Gandhi, K. Thandavan, S. Sethuraman, U.M. Krishnan, J. Porous Mater. 20, 5 (2013)

    Article  Google Scholar 

  19. P. Hongmanorom, J. Ashok, G. Zhang, Z. Bian, M.H. Wai, Y. Zeng, S. Xi, A. Borgna, S. Kawi, Appl. Catal. B 282, 3 (2021)

    Article  Google Scholar 

  20. J. Liu, H. Huang, X. Liu, J. Xiao, S. Zhong, X. She, Z. Fu, S.R. Kirk, D. Yin, Catal. Commun. 92, 5 (2017)

    Article  Google Scholar 

  21. R.R. Chada, S.S. Enumula, S. Reddy, K.M.D. Gudimella, S.R. Rao Kamaraju, D.R. Burri, Nkgafk skfgksf. Microporous Mesoporous Mater. 300, 10 (2020)

    Google Scholar 

  22. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science 279, 5350 (1998)

    Google Scholar 

  23. B.S. Liu, X.N. Wei, Y.P. Zhan, R.Z. Chang, F. Subhan, C.T. Au, Appl. Catal. B 102, 1–2 (2011)

    Article  Google Scholar 

  24. L. Wang, H. Liu, H. Ye, R. Hu, S. Yang, G. Tang, K. Li, Y. Yang, Nanomaterials (Basel) 8, 10 (2018)

    CAS  Google Scholar 

  25. J.H. Tsai, T.Y. Lee, H.L. Chiang, Nanomaterials (Basel) 13, 6 (2023)

    Google Scholar 

  26. S. Garg, K. Soni, G. Kumaran, M. Kumar, J. Gupta, L. Sharma, G. Dhar, Catal. Today 130, 2–4 (2008)

    Article  Google Scholar 

  27. J. Liu, L. Zhang, J. Zhu, H. Cheng, M. Hua, H. Liu, H. Li, W. Zhu, J. Liu, Chem. Eng. Sci. 275, 11 (2023)

    Google Scholar 

  28. J.-X. Liu, X.-Q. Liu, R.-X. Yan, L.-F. Jia, H.-F. Cheng, H. Liu, Y. Huang, M.-Q. Hua, H.-M. Li, W.-S. Zhu, Pet. Sci. 20, 2 (2023)

    Google Scholar 

  29. Y. Chen, Y. Huang, Int. J. Hydrogen Energy 48, 4 (2023)

    Article  Google Scholar 

  30. C. Tang, J. Peng, X. Li, Z. Zhai, W. Bai, N. Jiang, H. Gao, Y. Liao, Green Chem. 17, 2 (2015)

    Article  Google Scholar 

  31. Y.F. Huang, J.F. Fatriansyah, D. Dhaneswara, F.W. Situmorang, A. Brahmarsi, F. Delayori, U.A.A. Siti, D.P. Kusumawardhani, K.W. Tan, L. Ling, K.H. Leong, E3S Web Conf. 65, 40 (2018)

    Google Scholar 

  32. C. Lin, K. Tao, H. Yu, D. Hua, S. Zhou, Catal. Sci. Technol. 4, 11 (2014)

    Google Scholar 

  33. A. Nakahira, T. Hamada, Y. Yamauchi, Mater. Lett. 64, 19 (2010)

    Article  Google Scholar 

  34. H. Liu, H. Wang, J. Shen, Y. Sun, Z. Liu, Catal. Today 131, 1–4 (2008)

    Article  Google Scholar 

  35. M. Nagai, K. Koizumi, S. Omi, Catal. Today 35, 4 (1997)

    Article  Google Scholar 

  36. R.R. Chada, T. Ketike, A.R. Boilla, S.D. Gangadharam, S.R.R. Kamaraju, D.R. Burri, Mol. Catal. 438, 12 (2017)

    Google Scholar 

  37. N. Harish, N. Kathyayini, B. Baby, N. Nagaraju, J. Phys. Chem. Solids 154, 7 (2021)

    Article  Google Scholar 

  38. M.S. Aghakhani, A.A. Khodadadi, S. Najafi, Y. Mortazavi, J. Ind. Eng. Chem. 20, 5 (2014)

    Article  Google Scholar 

  39. O.D. Pavel, D. Tichit, I.-C. Marcu, Appl. Clay Sci. 61, 7 (2012)

    Article  Google Scholar 

  40. X. Liao, Z. Zhou, Z. Wang, X. Zou, G. Liu, M. Jia, W. Zhang, J. Colloid Interface Sci. 308, 1 (2007)

    Article  Google Scholar 

  41. W. Zhou, A. Zhou, Y. Zhang, C. Zhang, Z. Chen, L. Liu, Y. Zhou, Q. Wei, X. Tao, J. Catal. 374, 6 (2019)

    Article  Google Scholar 

  42. R.A.L. Baylon, J. Sun, L. Kovarik, M. Engelhard, H. Li, A.D. Winkelman, Y. Wang, Appl. Catal. B 234, 15 (2018)

    Article  Google Scholar 

  43. S. Kim, O. Byl, J.T. Yates, J. Phys. Chem. B 109, 8 (2005)

    Google Scholar 

  44. Z. Wu, Z. Li, C. Li, Chin. J. Chem. Eng. 52, 12 (2022)

    Google Scholar 

  45. A. Palčić, V. Valtchev, Applied Catalysis A. General. 606, 117795 (2020)

    Article  Google Scholar 

  46. M. Yang, H. Guo, Y. Li, W. Wang, L. Zhou, J. Environ. Sci. (China). 23 Suppl (2011)

  47. J. Zhu, X. Chen, X. Sang, G. Yang, Appl. Catal. A 669, 1 (2024)

    Article  Google Scholar 

  48. B. Wu, Z. Tong, X. Yuan, J. Porous Mater. 19, 5 (2011)

    Google Scholar 

  49. M.N. Timofeeva, V.N. Panchenko, J.W. Jun, Z. Hasan, O.V. Kikhtyanin, I.P. Prosvirin, S.H. Jhung, Microporous Mesoporous Mater. 165, 1 (2013)

    Article  Google Scholar 

  50. L. Kiwi-Minsker, G. Jenzer, L. Pliasova, A. Renken, Stud. Surf. Sci. Catal. 121, 2 (1999)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (52334009), the Science and Technology Commission of Shanghai Municipality (No. 21DZ1208900), Open Project of State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University (SKLASS-2023-Z17) and the Science and Technology Commission of Shanghai Municipality (No. 20511107700).

Author information

Authors and Affiliations

Authors

Contributions

L. Zhou wrote the main manuscript text, R Hong completed the data collation of Figure.3 and Figure.4, X. Zou and X. Wang revised the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Xiujing Zou or Xueguang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

zhou, L., Zou, X., Hong, R. et al. Gas-phase O-methylation of catechol with dimethyl carbonate over SBA-15-supported aluminum phosphate catalyst. J Porous Mater (2024). https://doi.org/10.1007/s10934-024-01598-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10934-024-01598-5

Keywords

Navigation