Skip to main content
Log in

Shaped binderless high SiO2/Al2O3 ratio Beta/ZSM-5 composites for volatile organic compounds adsorption

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Volatile organic compounds (VOCs) are primary components of air pollutants that pose a risk to the environment and public health. Adsorption is regarded as one of the most effective and practical strategies for dealing with VOCs contamination. A series of shaped binderless Beta/ZSM-5 composites were produced by a vapor-phase transfer method and dealuminated using a sulfuric acid solution to increase SiO2/Al2O3 ratio after steaming treatment to further increase the hydrophobicity of the samples. The shaped binderless Beta/ZSM-5 composites were characterized with XRD, SEM, TEM, XRF, NMR and N2 adsorption-desorption. The VOCs adsorption properties of the dealuminated Beta/ZSM-5 mesoporous composites and microporous ZSM-5 zeolites were assessed using dynamic adsorption experiments and temperature-programmed desorption (TPD) under both dry and wet environments. The results revealed that the dealuminated Beta/ZSM-5 composites have larger specific surface area and mesopore volume as well as strong hydrophobicity, and exhibit higher toluene, butyl acetate and o-xylene adsorption capacity than ZSM-5 under either dry or wet environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. K. Vikrant, K.-H. Kim, W. Peng, S. Ge, Y. Sik Ok, Chem. Eng. J. 387, 123943 (2020). https://doi.org/10.1016/j.cej.2019.123943

    Article  CAS  Google Scholar 

  2. K. Vikrant, C.-J. Na, S.A. Younis, K.-H. Kim, S. Kumar, J. Clean. Prod. 235, 1090–1102 (2019). https://doi.org/10.1016/j.jclepro.2019.07.038

    Article  CAS  Google Scholar 

  3. L.R. Guerra, A.M.T. de Souza, J.A. Cortes, V.O.F. Lione, H.C. Castro, G.G. Alves, Regul. Toxicol. Pharmacol. 91, 1–8 (2017). https://doi.org/10.1016/j.yrtph.2017.09.030

    Article  CAS  PubMed  Google Scholar 

  4. H. Wang, Q. Yang, Z. Zhang, F. Song, J. Zhong, W. Huang, R. Chen, J. Porous Mat. 27, 1179–1190 (2020). https://doi.org/10.1007/s10934-020-00891-3

    Article  CAS  Google Scholar 

  5. X. Zhang, Z. Xue, H. Li, L. Yan, Y. Yang, Y. Wang, J. Duan, L. Li, F. Chai, M. Cheng, W. Zhang, J. Environ. Sci. (China). 55, 69–75 (2017). https://doi.org/10.1016/j.jes.2016.05.036

    Article  CAS  PubMed  Google Scholar 

  6. R. Duarte-Davidson, C. Courage, L. Rushton, L. Levy, Occup. Environ. Med. 58, 2–13 (2001). https://doi.org/10.1136/oem.58.1.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. C. Yang, G. Miao, Y. Pi, Q. Xia, J. Wu, Z. Li, J. Xiao, Chem. Eng. J. 370, 1128–1153 (2019). https://doi.org/10.1016/j.cej.2019.03.232

    Article  CAS  Google Scholar 

  8. S.L. Suib, New and future developments in catalysis: Catalysis for remediation and environmental concerns, ed. by S. L. SuibElsevier, Newnes, (2013).

  9. H.S. Moon, I.S. Kim, S.J. Kang, S.K. Ryu, Carbon Lett. 15, 203–209 (2014). https://doi.org/10.5714/cl.2014.15.3.203

    Article  Google Scholar 

  10. H. Wang, S. Sun, L. Nie, Z. Zhang, W. Li, Z. Hao, J. Environ. Sci. (China). 123, 127–139 (2023). https://doi.org/10.1016/j.jes.2022.02.037

    Article  CAS  PubMed  Google Scholar 

  11. L. Zhu, D. Shen, K.H. Luo, J. Hazard. Mater. 389, 122102 (2020). https://doi.org/10.1016/j.jhazmat.2020.122102

    Article  CAS  PubMed  Google Scholar 

  12. D.P. Serrano, G. Calleja, J.A. Botas, F.J. Gutierrez, Ind. Eng. Chem. Res. 43, 7010–7018 (2004). https://doi.org/10.1021/ie040108d

    Article  CAS  Google Scholar 

  13. M. Guillemot, J. Mijoin, S. Mignard, P. Magnoux, Ind. Eng. Chem. Res. 46, 4614–4620 (2007). https://doi.org/10.1021/ie0616390

    Article  CAS  Google Scholar 

  14. H. Liu, B. Xu, K. Wei, Y. Yu, C. Long, Sci. Total Environ. 733, 139376 (2020). https://doi.org/10.1016/j.scitotenv.2020.139376

    Article  CAS  PubMed  Google Scholar 

  15. A. Ghoshal, S. Manjare, J. Loss, Prevent. Proc. 15, 413–421 (2002). https://doi.org/10.1016/S0950-4230(02)00042-6

  16. T. Yin, X. Meng, S. Wang, X. Yao, N. Liu, L. Shi, Sep. Purif. Technol. 280, 119634 (2022). https://doi.org/10.1016/j.seppur.2021.119634

    Article  CAS  Google Scholar 

  17. J. Alcañiz-Monge, A. Linares-Solano, B. Rand, J. Phys. Chem. B 105, 7998–8006 (2001). https://doi.org/10.1021/jp010674b

    Article  CAS  Google Scholar 

  18. X. Li, J. Wang, Y. Guo, T. Zhu, W. Xu, Chem. Eng. J. 411, 128558 (2021). https://doi.org/10.1016/j.cej.2021.128558

    Article  CAS  Google Scholar 

  19. H. Deng, T. Pan, Y. Zhang, L. Wang, Q. Wu, J. Ma, W. Shan, H. He, Chem. Eng. J. 394, 124986 (2020). https://doi.org/10.1016/j.cej.2020.124986

    Article  CAS  Google Scholar 

  20. A. Li, C. Luo, F. Wu, S. Zheng, L. Li, J. Zhang, L. Chen, K. Liu, C. Zhou, New. J. Chem. 44, 20396–20404 (2020). https://doi.org/10.1039/d0nj04539j

    Article  CAS  Google Scholar 

  21. Z. Mi, J. Li, T. Lu, P. Bai, J.-N. Zhang, W. Yan, R. Xu, Inorg. Chem. Front. 8, 3354–3362 (2021). https://doi.org/10.1039/d1qi00438g

    Article  CAS  Google Scholar 

  22. J. Wang, S. Cao, Y. Sun, X. Meng, J. Wei, Y. Ge, B. Liu, Y. Gong, Z. Li, G. Mo, ACS Appl. Nano Mater. 4, 13257–13266 (2021). https://doi.org/10.1021/acsanm.1c02786

    Article  CAS  Google Scholar 

  23. J. Higgins, R.B. LaPierre, J. Schlenker, A. Rohrman, J. Wood, G. Kerr, W. Rohrbaugh, Am. Chem. Soc, Div. Pet. Chem, Prepr; (USA). 33, (1988). https://doi.org/10.1016/s0144-2449(88)80219-7

  24. P.S. Bárcia, J.A.C. Silva, A.E. Rodrigues, Micropor Mesopor Mat. 79, 145–163 (2005). https://doi.org/10.1016/j.micromeso.2004.10

    Article  Google Scholar 

  25. M. Kraus, U. Trommler, F. Holzer, F.-D. Kopinke, U. Roland, Chem. Eng. J. 351, 356–363 (2018). https://doi.org/10.1016/j.cej.2018.06.128

    Article  CAS  Google Scholar 

  26. H. Tian, S. Liu, Y. Han, K. Yang, W. Xu, J. Porous Mat. 29, 713–722 (2022). https://doi.org/10.1007/s10934-022-01199-0

    Article  CAS  Google Scholar 

  27. S. Wang, Y. He, W. Jiao, J. Wang, W. Fan, Curr. Opin. Chem. Eng. 23, 146–154 (2019). https://doi.org/10.1016/j.coche.2019.04.002

    Article  Google Scholar 

  28. W. Wang, W. Zhang, Y. Chen, X. Wen, H. Li, D. Yuan, Q. Guo, S. Ren, X. Pang, B. Shen, J. Catal. 362, 94–105 (2018). https://doi.org/10.1016/j.jcat.2018.03.002

    Article  CAS  Google Scholar 

  29. H.K. Beyer, I. Belenykaja, A new method for the dealumination of faujasite-type zeolites, Studies in Surface Science and Catalysis, (Elsevier, Amsterdam, 1980), 203–210 https://doi.org/10.1016/s0167-2991(08)64880-6

    Chapter  Google Scholar 

  30. D.W. Breck, G.W. Skeels, Silicon substituted zeolite compositions and process for preparing sameGoogle Patents, (1985).

  31. R. Baran, Y. Millot, T. Onfroy, J.-M. Krafft, S. Dzwigaj, Micropor Mesopor Mat. 163, 122–130 (2012). https://doi.org/10.1016/j.micromeso.2012.06.055

    Article  CAS  Google Scholar 

  32. E.B. Lami, F. Fajula, D. Anglerot, T. Des Courieres, Micropor Mater. 1, 237–245 (1993). https://doi.org/10.1016/0927-6513(93)80067-5

    Article  CAS  Google Scholar 

  33. Z. Ma, H. Deng, L. Li, Q. Zhang, G. Chen, C. Sun, H. He, J. Yu, Chem. Sci. 14, 2131–2138 (2023). https://doi.org/10.1039/d2sc06389a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. J. Stelzer, M. Paulus, M. Hunger, J. Weitkamp, Micropor. Mesopor. Mat. 22, 1–8 (1998). https://doi.org/1016/S1387-1811(98)00071-7

  35. Z. Zhu, H. Xu, J. Jiang, H. Wu, P. Wu, ACS Appl. Mater. Interfaces. 9, 27273–27283 (2017). https://doi.org/10.1021/acsami.7b06173

    Article  CAS  PubMed  Google Scholar 

  36. N. Lauridant, T.J. Daou, G. Arnold, M. Soulard, H. Nouali, J. Patarin, D. Faye, Micropor Mesopor Mat. 152, 1–8 (2012). https://doi.org/10.1016/j.micromeso.2011.12.012

    Article  CAS  Google Scholar 

  37. C. Li, H. Yang, Y. Qi, H. Li, New. J. Chem. 46, 9048–9056 (2022). https://doi.org/10.1039/d2nj00373b

    Article  CAS  Google Scholar 

  38. C. Liu, C. Zhao, X. Hu, Y. Zou, J. Yun, X. Jiang, N. Wei, Z. Tong, Z. Chen, J. Chem. Technol. Biot. 96, 3442–3453 (2021). https://doi.org/10.1002/jctb.6908

    Article  CAS  Google Scholar 

  39. P.S. Chintawar, H.L. Greene, Appl. Catal. B-Environ. 14, 37–47 (1997). https://doi.org/10.1016/s0926-3373(97)00010-6

    Article  CAS  Google Scholar 

  40. L. Liu, R. Singh, G. Li, G. Xiao, P.A. Webley, Y. Zhai, Mater. Chem. Phys. 133, 1144–1151 (2012). https://doi.org/10.1016/j.matchemphys.2012.02.028

    Article  CAS  Google Scholar 

  41. M. Miyamoto, H. Iwatsuka, Y. Oumi, S. Uemiya, S. Van den Perre, G.V. Baron, J.F.M. Denayer, Chem. Eng. J. 363, 292–299 (2019). https://doi.org/10.1016/j.cej.2019.01.106

    Article  CAS  Google Scholar 

  42. R. Li, S. Chong, N. Altaf, Y. Gao, B. Louis, Q. Wang, Front. Chem. 7, 505 (2019). https://doi.org/10.3389/fchem.2019.00505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. R.N. Li, T.S. Xue, Z. Li, Q. Wang, Chem. Eng. J. 392 (2020). https://doi.org/10.1016/j.cej.2020.124861

  44. W.-C. Li, A.-H. Lu, R. Palkovits, W. Schmidt, B. Spliethoff, F. Schüth, J. Am. Chem. Soc. 127, 12595–12600 (2005). https://doi.org/10.1021/ja052693v

    Article  CAS  PubMed  Google Scholar 

  45. G. Rioland, H. Nouali, T.J. Daou, D. Faye, J. Patarin, Adsor. 23, 395–403 (2017). https://doi.org/10.1007/s10450-017-9870-9

    Article  CAS  Google Scholar 

  46. T. Zhao, Y. Wang, C. Sun, A. Zhao, C. Wang, X. Zhang, J. Zhao, Z. Wang, J. Lu, S. Wu, W. Liu, Micropor Mesopor Mat. 292, 109731 (2020). https://doi.org/10.1016/j.micromeso.2019.109731

    Article  CAS  Google Scholar 

  47. S. Wu, Y. Wang, C. Sun, T. Zhao, J. Zhao, Z. Wang, W. Liu, J. Lu, M. Shi, A. Zhao, L. Bu, Z. Wang, M. Yang, Y. Zhi, Chem. Eng. J. 417, 129172 (2021). https://doi.org/10.1016/j.cej.2021.129172

    Article  CAS  Google Scholar 

  48. X. Zhao, L. Wang, J. Li, S. Xu, W. Zhang, Y. Wei, X. Guo, P. Tian, Z. Liu, Catal. Sci. Technol. 7, 5882–5892 (2017). https://doi.org/10.1039/c7cy01804e

    Article  CAS  Google Scholar 

  49. B.N. Bhadra, J.Y. Song, N.A. Khan, J.W. Jun, T.-W. Kim, C.-U. Kim, S.H. Jhung, J. Catal. 365, 94–104 (2018). https://doi.org/10.1016/j.jcat.2018.06.016

    Article  CAS  Google Scholar 

  50. K.S. Sing, Colloid Surf. 38, 113–124 (1989). https://doi.org/10.1016/0166-6622(89)80148-9

    Article  CAS  Google Scholar 

  51. S. Liu, Y. Peng, J. Chen, W. Shi, T. Yan, B. Li, Y. Zhang, J. Li, J. Mater. Chem. A 6, 13769–13777 (2018). https://doi.org/10.1039/c8ta04082f

    Article  CAS  Google Scholar 

  52. S. Wang, P. Bai, Y. Wei, W. Liu, X. Ren, J. Bai, Z. Lu, W. Yan, J. Yu, ACS Appl. Mater. Interfaces. 11, 38955–38963 (2019). https://doi.org/10.1021/acsami.9b13819

    Article  CAS  PubMed  Google Scholar 

  53. J. Zhu, Y. Zhu, L. Zhu, M. Rigutto, A. van der Made, C. Yang, S. Pan, L. Wang, L. Zhu, Y. Jin, Q. Sun, Q. Wu, X. Meng, D. Zhang, Y. Han, J. Li, Y. Chu, A. Zheng, S. Qiu, X. Zheng, F.S. Xiao, J. Am. Chem. Soc. 136, 2503–2510 (2014). https://doi.org/10.1021/ja411117y

    Article  CAS  PubMed  Google Scholar 

  54. X. Zhang, B. Gao, A.E. Creamer, C. Cao, Y. Li, J. Hazard. Mater. 338, 102–123 (2017). https://doi.org/10.1016/j.jhazmat.2017.05.013

    Article  CAS  PubMed  Google Scholar 

  55. W. Zeng, H. Bai, Aerosol Air Qual. Res. 16, 2267–2277 (2016). https://doi.org/10.4209/aaqr.2016.01.0018

    Article  CAS  Google Scholar 

  56. H. Huang, W. Rong, Y. Gu, R. Chang, H. Lu, Acta Sci. Circum. 34, 3144–3151 (2014). https://doi.org/10.13671/j.hjkxxb.2014.0739

    Article  CAS  Google Scholar 

  57. J. Wang, W.-Q. Wang, Z. Hao, G. Wang, Y. Li, J.-G. Chen, M. Li, J. Cheng, Z.-T. Liu, RSC Adv. 6, 97048–97054 (2016). https://doi.org/10.1039/c6ra18687d

    Article  CAS  Google Scholar 

  58. Q. Tang, W. Deng, D. Chen, D. Liu, L. Guo, Dalton T. 50, 16694–16702 (2021). https://doi.org/10.1039/d1dt02869c

    Article  CAS  Google Scholar 

  59. X. Wang, C. Ma, J. Xiao, Q. Xia, J. Wu, Z. Li, Chem. Eng. J. 335, 970–978 (2018). https://doi.org/10.1016/j.cej.2017.10.102

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project is partially supported National Natural Science Foundation of China (21276183) and Haihe Laboratory of Sustainable Chemical Transformations (Grant No. CYC202101).

Author information

Authors and Affiliations

Authors

Contributions

L.Q. completed the main experiments, prepared all figures and wrote the main manuscript text. L.Q. and Y.W. designed the overall plan. Y.W., W.L. and L.B. served as scientific advisors. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yaquan Wang.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, L., Wang, Y., Liu, W. et al. Shaped binderless high SiO2/Al2O3 ratio Beta/ZSM-5 composites for volatile organic compounds adsorption. J Porous Mater (2024). https://doi.org/10.1007/s10934-024-01593-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10934-024-01593-w

Keywords

Navigation