Skip to main content
Log in

Influence of the crystalline structure of Co-Mo precursors on the hydrodesulfurization performance of unsupported tube-like Co-Mo sulfide catalysts

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A series of Co-Mo sulfide catalysts with tube-like hollow structure were prepared by a low temperature pre-sulfurization method using various CoMoO4 as precursors synthesized by coprecipitation process at different temperature. The crystallite structure of CoMoO4 precursors determined the properties of Co-Mo sulfide catalysts, including pore structure, concentration of CoMoS active phase, microstructure of MoS2 slabs, and desulfurization activity. The higher temperature led to better crystallinity of CoMoO4 precursor, resulting in less CoMoS active phase and fewer Mo atoms at the corner sites of the pre-sulfurized catalyst. In addition, the MoS2 slabs with shorter length and more stacking layers (especially Co-promoted MoS2 slabs) in the catalysts are also formed at appropriate precursor preparation temperature, which are favorable for forming more unsaturated coordination sites (especially corner sites). According to the results of hydrodesulfurization of dibenzothiophene on the Co-Mo sulfide catalysts, the reaction rate and the production yield are highly dependent on the number of surface-active centers, while the activity is mainly attributed to the Type II CoMoS species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. K.G. Knudsen, B.H. Cooper, H. Topsøe, Catalyst and process technologies for ultra low sulfur diesel. Appl Catal A: Gen 189, 205–215 (1999). https://doi.org/10.1016/S0926-860X(99)00277-X

    Article  CAS  Google Scholar 

  2. H. Farag, Hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene over NiMo and CoMo sulfide catalysts: kinetic modeling approach for estimating selectivity. J. Colloid Interface Sci. 348, 219–226 (2010). https://doi.org/10.1016/j.jcis.2010.04.022

    Article  CAS  PubMed  Google Scholar 

  3. Y. Okamoto, M. Breysse, G.M. Dhar, C. Song, Effect of support in hydrotreating catalysis for ultra clean fuels. Catal. Today 86, 1–3 (2003). https://doi.org/10.1016/S0920-5861(03)00414-0

    Article  CAS  Google Scholar 

  4. C.S. Song, An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal. Today 86, 211–263 (2003). https://doi.org/10.1016/S0920-5861(03)00412-7

    Article  CAS  Google Scholar 

  5. R.R. Chianelli, G. Berhault, B. Torres, Unsupported transition metal sulfide catalysts: 100 years of science and application. Catal. Today 147, 275–286 (2009). https://doi.org/10.1016/j.cattod.2008.09.041

    Article  CAS  Google Scholar 

  6. E.L. Wang, F.H. Yang, M.Y. Song, G.L. Chen, Q.Q. Zhang, F. Wang, L.C. Bing, G.J. Wang, D.Z. Han, Recent advances in the unsupported catalysts for the hydrodesulfurization of fuel. Fuel Process. Technol. 235, 107386 (2022). https://doi.org/10.1016/j.fuproc.2022.107386

    Article  CAS  Google Scholar 

  7. H. Farag, K. Sakanishi, M. Kouzu, A. Matsumura, Y. Sugimoto, I. Saito, Dibenzothiophene hydrodesulfurization over synthesized MoS2 catalysts. J Mol Catal A: Chem 206, 399–408 (2003). https://doi.org/10.1016/S1381-1169(03)00445-X

    Article  CAS  Google Scholar 

  8. B. Yoosuk, J.H. Kim, C.S. Song, C. Ngamcharussrivichai, P. Prasassarakich, Highly active MoS2, CoMoS2 and NiMoS2 unsupported catalysts prepared by hydrothermal synthesis for hydrodesulfurization of 4,6-dimethyldibenzothiophene. Catal. Today 130, 14–23 (2008). https://doi.org/10.1016/j.cattod.2007.07.003

    Article  CAS  Google Scholar 

  9. P. Afanasiev, C. Geantet, C. Thomazeau, B. Jouget, Molybdenum polysulfide hollow microtubules grown at room temperature from solution. Chem. Commun. 12(12), 1001–1002 (2000). https://doi.org/10.1039/B001406K

    Article  Google Scholar 

  10. P. Munnik, P.E. de Jongh, K.P. de Jong, Recent developments in the synthesis of supported catalysts. Chem. Rev. 115(14), 6687–6718 (2015). https://doi.org/10.1021/cr500486u

    Article  CAS  PubMed  Google Scholar 

  11. D.D. Yao, H.P. Yang, H.P. Chen, P.T. Williams, Co-precipitation, impregnation and so-gel preparation of Ni catalysts for pyrolysis-catalytic steam reforming of waste plastics. Appl. Catal. B Environ. 239, 565–577 (2018). https://doi.org/10.1016/j.apcatb.2018.07.075

    Article  CAS  Google Scholar 

  12. C.L. Yin, L.Y. Zhao, Z.J. Bai, H. Liu, Y.Q. Liu, C.G. Liu, A novel porous ammonium nickel molybdate as the catalyst precursor towards deep hydrodesulfurization of gas oil. Fuel 107, 873–878 (2013). https://doi.org/10.1016/j.fuel.2013.02.001

    Article  CAS  Google Scholar 

  13. L.C. Liu, A. Corma, Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118(10), 4981–5079 (2018). https://doi.org/10.1021/acs.chemrev.7b00776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. D. Ryaboshapka, L. Piccolo, M. Aouine, P. Bargiela, V. Briois, P. Afanasiev, Ultradispersed (Co)Mo catalysts with high hydrodesulfurization activity. Appl Catal B-Environ 302, 120831 (2022). https://doi.org/10.1016/j.apcatb.2021.120831

    Article  CAS  Google Scholar 

  15. S. Humbert, E. Devers, C. Lesage, C. Legens, L. Lemaitre, L. Sorbier, F. De Geuser, V. Briois, ASAXS study of the influence of sulfidation conditions and organic additives on sulfide slabs multiscale organization. J. Catal. 395, 412–424 (2021). https://doi.org/10.1016/j.jcat.2021.01.033

    Article  CAS  Google Scholar 

  16. S. Eijsbouts, S.W. Mayo, K. Fujita, Unsupported transition metal sulfide catalysts: from fundamentals to industrial application. Appl Catal A: Gen 322, 58–66 (2007). https://doi.org/10.1016/j.apcata.2007.01.008

    Article  CAS  Google Scholar 

  17. G.C. Li, L. Yue, R.K. Fan, D. Liu, X.B. Li, Synthesis of a Co-Mo sulfide catalyst with a hollow structure for highly efficient hydrodesulfurization of dibenzothiophene. Catal. Sci. Technol. 7, 5505–5509 (2017). https://doi.org/10.1039/C7CY01724C

    Article  CAS  Google Scholar 

  18. M.C. Liu, L.B. Kong, C. Lu, X.J. Ma, X.M. Li, Y.C. Luo, L. Kang, Design and synthesis of CoMoO4-NiMoO4·xH2O bundles with improved electrochemical properties for supercapacitors. J Mater Chem A 1, 1380–1387 (2013). https://doi.org/10.1039/C2TA00163B

    Article  CAS  Google Scholar 

  19. J.A. Rodriguez, S. Chaturvedi, J.C. Hanson, A. Albornoz, J.L. Brito, Electronic properties and phase transformations in CoMoO4 and NiMoO4: XANES and time-resolved synchrotron XRD studies. J. Phys. Chem. B 102(8), 1347–1355 (1998). https://doi.org/10.1021/jp972137q

    Article  CAS  Google Scholar 

  20. B. Hedman, J.E. Penner-Hahn, K.O. Hodgson, Molybdenum LII, III edge studies EXAFS and near edge structure III (Springer-Verlag, Berlin, 1984), pp.64–66

    Google Scholar 

  21. S.R. Bare, G.E. Mitchell, J.J. Maj, G.E. Vrieland, J.L. Gland, Local site symmetry of dispersed molybdenum oxide catalysts: XANES at the Mo L2, 3-edges. J. Phys. Chem. 97, 6048–6053 (1993). https://doi.org/10.1021/j100124a043

    Article  CAS  Google Scholar 

  22. L. van Haandel, G. Smolentsev, J.A. van Bokhoven, E.J.M. Hensen, T. Weber, Evidence of octahedral Co-Mo-S sites in hydrodesulfurization catalysts as determined by resonant inelastic x-ray scattering and x-ray absorption spectroscopy. ACS Catal. 10, 10978–10988 (2020). https://doi.org/10.1021/acscatal.0c03062

    Article  CAS  Google Scholar 

  23. J.L. Brito, A.L. Barbosa, Effect of phase composition of the oxidic precursor on the HDS activity of the sulfided molybdates of Fe (II), Co (II), and Ni (II). J. Catal. 171, 467–475 (1997). https://doi.org/10.1006/jcat.1997.1796

    Article  CAS  Google Scholar 

  24. C. Martin, C. Lamonier, M. Fournier, O. Mentré, V. Harlé, D. Guillaume, E. Payen, Evidence and characterization of a new decamolybdocobaltate cobalt salt: an efficient precursor for hydrotreatment catalyst preparation. Chem. Mater. 17, 4438–4448 (2005). https://doi.org/10.1021/cm0503634

    Article  CAS  Google Scholar 

  25. J.K. Li, M. Li, Z.L. Jin, 0D CdxZn1-xS and amorphous Co9S8 formed S-scheme heterojunction boosting photocatalytic hydrogen evolution. Mol Catal 501, 111378 (2021). https://doi.org/10.1016/j.mcat.2020.111378

    Article  CAS  Google Scholar 

  26. Z.T. Xiao, Q.Y. Li, W.T. Wang, G.C. Li, G.N. Lin, X.B. Li, S. Chen, Effects of temperature and time on the facile low-temperature pre-sulfurization of tube-like unsupported Co-Mo catalysts for hydrodesulfurization. Mol Catal 528, 112470 (2022). https://doi.org/10.1016/j.mcat.2022.112470

    Article  CAS  Google Scholar 

  27. J.L. Rico, M. Ávalos-Borja, A. Barrera, J.S.J. Hargreaves, Template-free synthesis of CoMoO4 rods and their characterization. Mater. Res. Bull. 48, 4614–4617 (2013). https://doi.org/10.1016/j.materresbull.2013.07.007

    Article  CAS  Google Scholar 

  28. J. Silver, M.I. Martinez-Rubio, T.G. Ireland, G.R. Fern, R. Withnall, The effect of particle morphology and crystallite size on the upconversion luminescence properties of erbium and ytterbium Co-doped yttrium oxide phosphors. J. Phys. Chem. B 105, 948–953 (2001). https://doi.org/10.1021/jp002778c

    Article  CAS  Google Scholar 

  29. A.R. Roosen, W.C. Carter, Simulations of microstructural evolution: anisotropic growth and coarsening. Physica A 261, 232–247 (1998). https://doi.org/10.1016/S0378-4371(98)00377-X

    Article  CAS  Google Scholar 

  30. K.K. Caswell, C.M. Bender, C.J. Murphy, Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Lett. 3, 667–669 (2003). https://doi.org/10.1021/nl0341178

    Article  CAS  Google Scholar 

  31. Y.D. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, G.A. Somorjai, A.P. Alivisatos, Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304(5671), 711–714 (2004). https://doi.org/10.1126/science.1096566

    Article  CAS  PubMed  Google Scholar 

  32. L. Yu, L. Zhang, H.B. Wu, X.W. (David) Luo, Formation of NixCo3-xS4 hollow nanoprisms with enhanced pseudocapacitive properties. Angew. Chem. Int. Ed. 126(53), 3785–3788 (2014). https://doi.org/10.1002/anie.201400226

    Article  CAS  Google Scholar 

  33. G. Leofanti, M. Padovan, G. Tozzola, B. Venturelli, Surface area and pore texture of catalysts. Catal. Today 41, 207–219 (1998). https://doi.org/10.1016/S0920-5861(98)00050-9

    Article  CAS  Google Scholar 

  34. Q. Liu, F.N. Gu, X.P. Liu, Y.J. Liu, H.F. Li, Z.Y. Zhong, G.W. Xu, F.B. Su, Enhanced catalytic performances of Ni/Al2O3 catalyst via addition of V2O3 for CO methanation. Appl CatalA: Gen 488, 37–47 (2014). https://doi.org/10.1016/j.apcata.2014.09.028

    Article  CAS  Google Scholar 

  35. M.H. Jiang, B.W. Wang, Y.Q. Yao, Z.H. Li, X.B. Ma, S.D. Qin, Q. Sun, Effect of sulfidation temperature on CoO-MoO3/γ-Al2O3 catalyst for sulfur-resistant methanation. Catal SciTechnol 3, 2793–2800 (2013). https://doi.org/10.1039/C3CY00361B

    Article  CAS  Google Scholar 

  36. K. Inamura, T. Takyu, Y. Okamoto, K. Nagata, T. Imanaka, Temperature-programmed sulfiding of precursor cobalt oxide genesis of highly active sites on sulfided cobalt catalyst for hydrogenation and isomerization. J. Catal. 133, 498–514 (1992). https://doi.org/10.1016/0021-9517(92)90257-I

    Article  CAS  Google Scholar 

  37. B.S. Clausen, S. Mørup, H. Topsøe, R. Candia, Mössbauer studies of the activated state of Co-Mo hydrodesulfurization catalysts. J. Phys. Colloq. 37(C6), 249–252 (1976)

    Google Scholar 

  38. L.F. Fei, S.J. Lei, W.B. Zhang, W. Lu, Z.Y. Lin, C.H. Lam, Y. Chai, Y. Wang, Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes. NatCommun 7, 12206 (2016). https://doi.org/10.1038/ncomms12206

    Article  CAS  Google Scholar 

  39. G. Berhault, V. Parvulescu, E. Kemnitz, Metal sulfides: novel synthesis methods and recent developments, in New Materials for Catalytic Applications. (Elsevier Press, Netherlands, 2016), pp.313–360

    Chapter  Google Scholar 

  40. J.V. Lauritsen, F. Besenbacher, Atom-resolved scanning tunneling microscopy investigations of molecular adsorption on MoS2 and CoMoS hydrodesulfurization catalysts. J. Catal. 328, 49–58 (2015). https://doi.org/10.1016/j.jcat.2014.12.034

    Article  CAS  Google Scholar 

  41. P. Zhang, T.S. Li, K.B. Chi, C.K. Xiao, J.Y. Fan, X.L. Wang, A.J. Duan, DFT insights into the formation of sulfur vacancies over corner/edge site of Co/Ni-promoted MoS2 and WS2 under the hydrodesulfurization conditions. Appl. Catal. B Environ. 257, 117937 (2019). https://doi.org/10.1016/j.apcatb.2019.117937

    Article  CAS  Google Scholar 

  42. H. Topsøe, The role of Co-Mo-S type structures in hydrotreating catalysts. Appl Catal A: Gen 322, 3–8 (2007). https://doi.org/10.1016/j.apcata.2007.01.002

    Article  CAS  Google Scholar 

  43. M.C. Kung, H.H. Kung, IR studies of NH3, pyridine, CO, and NO adsorbed on transition metal oxides. Catal Rev 27(3), 425–460 (1985). https://doi.org/10.1080/01614948508064741

    Article  Google Scholar 

  44. L. Portela, P. Grange, B. Delmon, The adsorption of nitric oxide on supported CoMo hydrodesulfurization catalysts: a review. Catal Rev 37(4), 699–731 (1995). https://doi.org/10.1080/01614949508006452

    Article  CAS  Google Scholar 

  45. N.Y. Topsøe, H. Topsøe, Adsorption studies on hydrodesulfurization catalysts I. Infrared and volumetric study of NO adsorption on alumina-supported Co, Mo, and Co-Mo catalysts in their calcined state. J. Catal. 75(2), 354–374 (1982). https://doi.org/10.1016/0021-9517(82)90217-2

    Article  Google Scholar 

  46. J.B. Peri, Computerized infrared studies of Mo/Al2O3 and Mo/SiO2 catalysts. J. Phys. Chem. 86(9), 1615–1622 (1982). https://doi.org/10.1021/j100206a028

    Article  CAS  Google Scholar 

  47. N. Koizumi, K. Takahasi, M. Yamazaki, M. Yamada, DRIFT study of temperature programmed desorption of NO adsorbed on Co-Mo/Al2O3 sulfided at high pressure. Catal. Today 45(1–4), 313–318 (1998). https://doi.org/10.1016/S0920-5861(98)00237-5

    Article  CAS  Google Scholar 

  48. P. Castillo-Villalón, J. Ramírez, A. Reyes-Sosa, A. Gutiérrez-Alejandre, E. Leyva- Ramírez, R. Cuevas, A. Toledo-Durán, On the contribution of the cobalt sulfide phase to the global activity of industrial-type CoMo/Al2O3 catalysts in the HDS of DBT. Catal. Today 394–396, 41–49 (2022). https://doi.org/10.1016/j.cattod.2021.11.001

    Article  CAS  Google Scholar 

  49. Y.B. Zhang, F. Liu, W.B. Chen, W. Han, W.M. Zhai, Y.T. Lu, M.F. Li, Effective reduction of hydrogen consumption in ultra-deep hydrodesulfurization of diesel: deep insights into the effect of thermodynamic limitations during hydrotreating. Fuel 356, 129640 (2024). https://doi.org/10.1016/j.fuel.2023.129640

    Article  CAS  Google Scholar 

  50. X.Y. Weng, L.Y. Cao, G.H. Zhang, F. Chen, L. Zhao, Y.H. Zhang, J.S. Gao, C.M. Xu, Ultradeep hydrodesulfurization of diesel: mechanisms, catalyst design strategies, and challenges. Ind. Eng. Chem. Res. 59(49), 21261–21274 (2020). https://doi.org/10.1021/acs.iecr.0c04049

    Article  CAS  Google Scholar 

  51. P. Zheng, T.S. Li, K.B. Chi, C.K. Xiao, X.L. Wang, J.Y. Fan, A.J. Duan, C.M. Xu, DFT insights into the direct desulfurization pathways of DBT and 4,6-DMDBT catalyzed by co-promoted and Ni-promoted MoS2 corner sites. Chem. Eng. Sci. 206, 249–260 (2019). https://doi.org/10.1016/j.ces.2019.05.032

    Article  CAS  Google Scholar 

  52. R.R. Chianelli, G. Berhault, P. Raybaud, S. Kasztelan, J. Hafner, H. Toulhoat, Periodic trends in hydrodesulfurization: in support of the Sabatier principle. Appl Catal A: Gen 227(1–2), 83–96 (2002). https://doi.org/10.1016/S0926-860X(01)00924-3

    Article  CAS  Google Scholar 

  53. M. Daage, R.R. Chianelli, Structure-function relations in molybdenum sulfide catalysts: the “Rim-Edge” model. J. Catal. 149(2), 414–427 (1994). https://doi.org/10.1006/jcat.1994.1308

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Shandong Provincial Natural Science Foundation of China (Grant No. ZR2020MB029) and the State Key Laboratory of Heavy Oil Processing (Grant No. 2018-02).

Funding

Shandong Provincial Natural Science Foundation of China, ZR2020MB029, The State Key Laboratory of Heavy Oil Processing, 2018-02

Author information

Authors and Affiliations

Authors

Contributions

Zhengting Xiao: Formal analysis, Investigation, Writing-Original draft, Visualization. Qingyang Li: Investigation. Guangci Li: Conceptualization, Methodology, Writing-Review & Editing, Funding acquisition. Wentai Wang: Writing-Review & Editing, Supervision. Xuebing Li: Supervision. Song Chen: Formal analysis. Chunhu Li: Supervision.

Corresponding authors

Correspondence to Guangci Li, Wentai Wang or Song Chen.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1920 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Z., Li, Q., Li, G. et al. Influence of the crystalline structure of Co-Mo precursors on the hydrodesulfurization performance of unsupported tube-like Co-Mo sulfide catalysts. J Porous Mater (2024). https://doi.org/10.1007/s10934-024-01592-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10934-024-01592-x

Keywords

Navigation