Skip to main content
Log in

Preparation of millimeter-sized spherical SiO2–Al2O3 with various acid catalysts for the acetalization of glycerol with acetone

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Through the sol-gel-oil ammonia column method, millimeter-sized spherical SiO2–Al2O3 particles were successfully prepared using aluminum isopropoxide and varying amounts of tetraethyl orthosilicate. The impact of different Al/Si molar ratios on the structure and performance of SiO2–Al2O3 materials was thoroughly investigated. The surface of the samples was analyzed for acidic sites (Brønsted and Lewis acids) both qualitatively and quantitatively. The millimeter-sized spherical SiO2–Al2O3 materials were used as a catalyst in the Solketal production process, involving acetalization of acetone and glycerol. The glycerin conversion rate reached 88.67% and the Solketal selectivity reached 93.28% when the SiO2–Al2O3 spherical particles reached with Al/Si molar ratio of 8. The spherical SiO2–Al2O3 exhibits high catalytic activity in the acetalization reaction due to its large specific surface area, thermal stability, and moderate Brønsted and Lewis acidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. M.W. Hahn, J.R. Copeland, P.A.H. Van et al., Stability of amorphous silica-alumina in hot liquid water. ChemSusChem. 6, 2304–2315 (2013)

    Article  CAS  PubMed  Google Scholar 

  2. W. Daniell, U. Schubert, R. Glöckler et al., Enhanced surface acidity in mixed alumina–silicas: a low-temperature FTIR study. Appl. Catal. A-Gen. 196, 247–260 (2000)

    Article  CAS  Google Scholar 

  3. Z.X. Zhao, C.G. Xia, Q.J. Xue et al., Preparation, structure and properties of spherical SiO2-Al2O3 composites. Acta Phys. -Chim Sin. 23, 549–553 (2007)

    Article  Google Scholar 

  4. A. Ishihara, H. Oono, T. Hashimoto et al., Preparation of SiO2 and SiO2-Al2O3 catalysts by gel skeletalreinforcement using hexamethyldisiloxane (HMDS) and acetic anhydride and aluminum tri-sec-butoxide (ASB) systems and elucidation of their catalytic cracking properties as matrices. Micropor. Mesopor. Mat. 247, 0065–7727 (2014)

    Google Scholar 

  5. K.M. Mardkhe, K. Keyvanloo, H.C. Bartholomew et al., Acid site properties of thermally stable, silica-doped alumina as a function of silica/alumina ratio and calcination temperature. Appl. Catal. A-Gen. 482, 16–23 (2014)

    Article  CAS  Google Scholar 

  6. C. Yu, Q. Zhang, P. Zhang, Application summary of up-flow reactor for residue hydrogenation unit of sinochem quanzhou petrochemical company. Pet. Refin. Eng. 49, 28–31 (2019)

    Google Scholar 

  7. C.L. Liu, Y. Liu, S.B. Wu, BrØnsted and Lewis acid synergistic catalyst system for esterification of levulinic acid. Appl. Chem. Ind. 48, 361–364 (2019)

    Google Scholar 

  8. L.M. Peng, Y. Liu, N. Kim et al., Detection of Brønsted acid sites in zeolite HY with high-field 17O-MAS-NMR techniques. Nat. Mater. 4, 216–219 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. S. Li, S.J. Huang, W. Shen et al., Probing the spatial proximities among acid sites in dealuminated HY Zeolite by solid-state NMR spectroscopy. J. Phys. Chem. C 112, 14486–14494 (2008)

    Article  CAS  Google Scholar 

  10. C. Liu, G. Li, E.J.M. Hensen et al., Nature and catalytic role of extraframework aluminum in faujasite zeolite: a theoretical perspective. ACS Catal. 5, 7024–7033 (2015)

    Article  CAS  Google Scholar 

  11. C. Liu, G. Li, E.J.M. Hensen et al., Relationship between acidity and catalytic reactivity of faujasite zeolite: a periodic DFT study. J. Catal. 344, 570–577 (2016)

    Article  CAS  Google Scholar 

  12. Z.W. Yu, A.M. Zheng, Q. Wang et al., Insights into the dealumination of zeolite HY revealed by sensitivity-enhanced 27Al DQ-MAS NMR spectroscopy at high field. Angew Chem. 49, 8657–8661 (2010)

    Article  CAS  Google Scholar 

  13. Z.W. Yu, S.H. Li, Q. Wang et al., Brønsted/lewis acid synergy in H-ZSM-5 and H-MOR zeolites studied by 1H and 27Al DQ-MAS solid-state NMR spectroscopy. J. Phys. Chem. C 115, 22320–22327 (2011)

    Article  CAS  Google Scholar 

  14. W. Li, J. Zheng, Y. Luo et al., Effect of hierarchical porosity and phosphorus modification on the catalytic properties of zeolite Y. Appl. Surf. Sci. 382, 302–308 (2016)

    Article  ADS  CAS  Google Scholar 

  15. Y. Zhang, Y. Liu, W. Hu et al., Investigation on the catalysts for condensation of gyclohexanone with glycerol. Fine Chem. 25, 366–368 (2008)

    CAS  Google Scholar 

  16. J.M. Guarinos, F.G. Cirujano, A. Rapeyko et al., Conversion of levulinic acid to γ-valerolactone over Zr-containing metal-organic frameworks: evidencing the role of Lewis and Brønsted acid sites. Mol. Catal. 515, 2468–8231 (2021)

    Google Scholar 

  17. W. Huang, X. Liu, Technical study on condensation of Solketal by solid catalyst. Guangzhou Chem. Ind. 45, 39–41 (2017)

    Google Scholar 

  18. X. Jin, Y.S. Li, Q.Q. XIE et al., Progress on Solketal synthesis catalyzed by porous materials. Chem. Ind. Eng. Prog. 42, 731–743 (2023)

    Google Scholar 

  19. T. Zhang, X.L. Xin, S. Liao et al., Efficient synthesis of Solketal from glycerol and acetone catalyzed by FeCl3 /γ-Al2O3**. Chemistryselect. 8, 2365–6549 (2023)

    Google Scholar 

  20. Y.Y. Ge, Q.Z. Jia, G.C. Gao et al., SiO2-Al2O3 composite oxides with hierarchical pores as solid acid catalysts for tetrahydrofuran polymerization. Kinet. Catal+. 54, 761–766 (2013)

    Article  CAS  Google Scholar 

  21. D.L. Gui, F.G. Shu, Q. Ming et al., The Preparation and properties of SiO2-Al2O3 composite fluoride removal agent. Mater. Sci. Forum. 809–810, 471–476 (2014)

    Google Scholar 

  22. Z.G. Kun, Y.H. Chun, H. Zhun et al., Transfer hydrogenation of cinnamaldehyde with 2-propanol on Al2O3 and SiO2-Al2O3 catalysts: role of Lewis and Brønsted acidic sites. Catal. Sci. Technol. 7, 4511–4519 (2017)

    Article  Google Scholar 

  23. M. Shen, X. Jiang, M. Zhang et al., Synthesis of SiO2-Al2O3 composite aerogel from fly ash: a low-cost and facile approach. J. Sol-Gel Sci. Techn. 93, 281–290 (2020)

    Article  CAS  Google Scholar 

  24. F. Peng, Y.G. Jiang, J.Z. Feng et al., A facile method to fabricate monolithic alumina-silica aerogels with high surface areas and good mechanical properties. J. Eur. Ceram. Soc. 40, 2480–2488 (2020)

    Article  CAS  Google Scholar 

  25. H. Yu, Z. Tong, S. Yue et al., Effect of SiO2 deposition on thermal stability of Al2O3-SiO2 aerogel. J. Eur. Ceram. Soc. 41, 580–589 (2020)

    Article  Google Scholar 

  26. Y.C. Mi, Z.Q. Liu, S. Liu et al., Preparation of monodispersed SiO2-Al2O3 microspheres based on fly ash by thermally induced phase separation. J. Non-Cryst Solids. 606, 0022–3093 (2023)

    Article  Google Scholar 

  27. S. Katarzyna, E.A. Díaz-Alvarez, C.C. Vanesa et al., The role of Brønsted and Lewis acid sites in acetalization of glycerol over modified mesoporous cellular foams. J. Phys. Chem. C 120, 16699–16711 (2016)

    Article  Google Scholar 

  28. C.J.A. Mota, S.C.X.A. Da, N.J. Rosenbach et al., Glycerin derivatives as fuel additives: the addition of glycerol/acetone ketal (Solketal) in gasolines. Energy. Fuels. 24, 2733–2736 (2010)

    Article  CAS  Google Scholar 

  29. T. Osaki, K. Nagashima, K. Watari et al., Silica-doped alumina cryogels with high thermal stability. J. Non-Cryst Solids. 353, 2436–2442 (2007)

    Article  ADS  CAS  Google Scholar 

  30. L. Wu, Y. Huang, Z. Wang et al., Fabrication of hydrophobic alumina aerogel monoliths by surface modification and ambient pressure drying. Appl. Surf. Sci. 256, 5973–5977 (2010)

    Article  ADS  CAS  Google Scholar 

  31. L. Gan, Z. Xu, Y. Feng et al., Synthesis of alumina aerogels by ambient drying method and control of their structures. J. Porous Mat. 12, 317–321 (2005)

    Article  CAS  Google Scholar 

  32. W. Zhu, D. Ren, J. Cui et al., Synthesis of Al-doped KIT-6 materials and their adsorption properties for methylene blue. J. Funct. Mater. 54, 6184–6193 (2023)

    CAS  Google Scholar 

  33. D.S. Guo, Z.F. Ma, Q.Z. Jiang et al., FT-IR and density functional theory studies on surface acidity of SO24–/SiO2. Chin. J. Catal. 28, 627–634 (2007)

    CAS  Google Scholar 

  34. B.H. Wang, C.F. Duan, Z.B. Zhang et al., Synthesis of dipropylene glycol and tripropylene glycol over solid acid catalyst. Chem. Ind. Eng. 1, 1004–9533 (2022)

    Google Scholar 

  35. A. Prabhu, L. Kumaresan, P. Muthaiahpillai et al., Synthesis and characterization of aluminium incorporated mesoporous KIT-6: efficient catalyst for acylation of phenol. Appl. Catal. A-Gen. 360, 59–65 (2009)

    Article  CAS  Google Scholar 

  36. K.T. Phung, G. Busca, Ethanol dehydration on silica-aluminas: Active sites and ethylene/diethyl ether selectivities. Catal. Commun. 68, 1110–1115 (2015)

    Article  Google Scholar 

  37. W.A.D. Lima, A.S.M. Villalba, M.N.O. Braga et al., Effect of silica/alumina ratio and structure-directing agent on the physical and chemical properties of SAPO-34. J. Sol-Gel Sci. Techn. 100, 466–476 (2021)

    Article  Google Scholar 

  38. L.F. Yu, C. Xu, W.M. Zhang et al., Tailoring the pore structure, morphology and acidity of MFI zeolites by the regulation of Si/Al ratio in the synthetic gel. J. Solid State Chem. 327, 0022–4596 (2023)

    Article  Google Scholar 

  39. A.A. Shutilov, G.A. Zenkovets, S.V. Tsybulya et al., Effect of silica on the stability of the nanostructure and texture of fine-particle alumina. Kinet. Catal+. 53, 125–136 (2012)

    Article  CAS  Google Scholar 

  40. K.M. Mardkhe, B. Huang, H.C. Bartholomew et al., Synthesis and characterization of silica doped alumina catalyst support with superior thermal stability and unique pore properties. J. Porous Mat. 23, 475–487 (2016)

    Article  CAS  Google Scholar 

  41. J. Yang, Q. Wang, T. Wang et al., Facile one-step precursor-to-aerogel synthesis of silica-doped alumina aerogels with high specific surface area at elevated temperatures. J. Porous Mat. 24, 889–897 (2017)

    Article  CAS  Google Scholar 

  42. C.V. Calvino, K. Stawicka, M. Trejda et al., Real-time raman monitoring and control of the catalytic acetalization of glycerol with acetone over modified mesoporous cellular foams. J. Phys. Chem. C 118, 10780–10791 (2014)

    Article  Google Scholar 

  43. C.N. Fan, C.H. Xu, C.Q. Liu et al., Catalytic acetalization of biomass glycerol with acetone over TiO. React. Kinet Mech. Cat. 107, 189–202 (2012)

    Article  CAS  Google Scholar 

  44. P. Amit, K.M. Manish, D.S. Atindra, Investigation on site-specific tolerance to water forsolid acid catalysts employed for a model reaction of Solketal formation. Appl. Catal. A-Gen. 663, 0926–860X (2023)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Yongjun Ji for his assistance of acidimetric estimation. This work was financially supported by the “14th Five Year ” Plan National Key R&D Plan (2022YFC3701700).

Author information

Authors and Affiliations

Authors

Contributions

Xiang Meng wrote the main manuscript text . Xiulan Xin provided some modification suggestions. Tiantian Zhang assisted in analyzing experimental data. Yang Yu and Yuqing Cheng provided assisitance for the experiment.

Corresponding author

Correspondence to Xiulan Xin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Xin, X., Zhang, T. et al. Preparation of millimeter-sized spherical SiO2–Al2O3 with various acid catalysts for the acetalization of glycerol with acetone. J Porous Mater (2024). https://doi.org/10.1007/s10934-024-01558-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10934-024-01558-z

Keywords

Navigation