Skip to main content
Log in

Green synthesis of porous bamboo-based activated carbon with high VOCs adsorption performance via steam activation method

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

VOCs has serious impacts on the environment and humans due to its volatility. Activated carbon, as an adsorption material, has a rich pore structure and is widely used. This study uses fast-growing bamboo as a precursor and water vapor as a high-temperature activating agent to prepare environmentally friendly and green activated carbon adsorbent materials with high specific surface area and high adsorption performance. Microscopic observations show that natural bamboo has a regular porous fiber structure, which is conducive to the penetration of water vapor and the occurrence of activation reactions at high temperatures. BET tests show that the activation temperature has a significant impact on the specific surface area and pore size distribution of the final activated carbon product. When the activation temperature is 850 oC, the specific surface area can reach up to 1315 m²/g, and it exhibits high VOCs adsorption capacity and cyclic adsorption performance. This study provides a new approach for the environmentally friendly preparation of biomass carbon materials and expands the application prospects of carbon materials in the field of adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author, [Chunlin Liu, chunlin301@hotmail.com], upon reasonable request.

References

  1. Y. Jiang, X. Xu, B. Liu, C. Zhou, H. Wang, J. Qiu, Z. Zeng, Y. Ge, L. Li, Optimal pore size design guided by GCMC molecular simulation for VOCs adsorption. Micropor. Mesopor. Mat. 341, 112081 (2022). https://doi.org/10.1016/j.micromeso.2022.112081

    Article  CAS  Google Scholar 

  2. I. Ushiki, Y. Ueno, S. Takishima, Y. Ito, H. Inomata, Adsorption equilibria of ester VOCs (ethyl and butyl acetates) on activated carbon in supercritical CO2: measurement and modeling by the Dubinin–Astakhov equation. J. Supercrit Fluid. 189, 105719 (2022). https://doi.org/10.1016/j.supflu.2022.105719

    Article  CAS  Google Scholar 

  3. Q. Yu, W. Zhang, J. Li, W. Liu, Y. Wang, W. Chu, X. Zhang, L. Xu, X. Zhu, X. Li, High-silica FAU zeolite through controllable framework modulation for VOCs adsorption under high humidity. Micropor. Mesopor. Mat. 355, 112570 (2023). https://doi.org/10.1016/j.micromeso.2023.112570

    Article  CAS  Google Scholar 

  4. J. Cheng, Z. Lin, D. Wu, C. Liu, Z. Cao, Aramid textile with near-infrared laser-induced graphene for efficient adsorption materials. J. Hazard. Mater. 436, 129150 (2022). https://doi.org/10.1016/j.jhazmat.2022.129150

    Article  CAS  PubMed  Google Scholar 

  5. W. Xiang, X. Zhang, C. Cao, G. Quan, M. Wang, A.R. Zimmerman, B. Gao, Microwave-assisted pyrolysis derived biochar for volatile organic compounds treatment: characteristics and adsorption performance. Bioresource Technol. 355, 127274 (2022). https://doi.org/10.1016/j.biortech.2022.127274

    Article  CAS  Google Scholar 

  6. T. Yin, X. Meng, S. Wang, X. Yao, N. Liu, L. Shi, Study on the adsorption of low-concentration VOCs on zeolite composites based on chemisorption of metal-oxides under dry and wet conditions. Sep. Purif. Technol. 280, 119634 (2022). https://doi.org/10.1016/j.seppur.2021.119634

    Article  CAS  Google Scholar 

  7. R. Shadkam, M. Naderi, A. Ghazitabar, S. Akbari, Adsorption performance of reduced graphene-oxide/cellulose nano-crystal hybrid aerogels reinforced with waste-paper extracted cellulose-fibers for the removal of toluene pollution. Mater. Today Commun. 28, 102610 (2021). https://doi.org/10.1016/j.mtcomm.2021.102610

    Article  CAS  Google Scholar 

  8. Y. Zhang, J. Qi, Y. Sun, Z. Zhu, C. Wang, X. Sun, J. Li, Anchoring nanosized MOFs at the interface of porous millimeter beads and their enhanced adsorption mechanism for VOCs. J. Clean. Prod. 353, 131631 (2022). https://doi.org/10.1016/j.jclepro.2022.131631

    Article  CAS  Google Scholar 

  9. H. Wang, H. Guo, Y. Zhao, X. Dong, M. Gong, Thermodynamic analysis of a petroleum volatile organic compounds (VOCs) condensation recovery system combined with mixed-refrigerant refrigeration. Int. J. Refrig. 116, 23–35 (2020). https://doi.org/10.1016/j.ijrefrig.2020.03.011

    Article  CAS  Google Scholar 

  10. Z. Zhang, C. Jiang, D. Li, Y. Lei, H. Yao, G. Zhou, K. Wang, Y. Rao, W. Liu, C. Xu, X. Zhang, Micro-mesoporous activated carbon simultaneously possessing large surface area and ultra-high pore volume for efficiently adsorbing various VOCs. Carbon. 170, 567–579 (2020). https://doi.org/10.1016/j.carbon.2020.08.033

    Article  CAS  Google Scholar 

  11. J. Cheng, X. You, H. Li, J. Zhou, Z. Lin, D. Wu, C. Liu, Z. Cao, H. Pu, Laser irradiation method to prepare polyethylene porous fiber membrane with ultrahigh xylene gas filtration capacity. J. Hazard. Mater. 407, 124395 (2021). https://doi.org/10.1016/j.jhazmat.2020.124395

    Article  CAS  PubMed  Google Scholar 

  12. K. Rahbar-Shamskar, A. Rashidi, S. Baniyaghoob, S. Khodabakhshi, In-situ catalytic fast pyrolysis of reed as a sustainable method for production of porous carbon as VOCs adsorbents. J. Anal. Appl. Pyrol. 164, 105520 (2022). https://doi.org/10.1016/j.jaap.2022.105520

    Article  CAS  Google Scholar 

  13. X. Zhang, L. Cao, W. Xiang, Y. Xu, B. Gao, Preparation and evaluation of fine-tuned micropore biochar by lignin impregnation for CO2 and VOCs adsorption. Sep. Purif. Technol. 295, 121295 (2022). https://doi.org/10.1016/j.seppur.2022.121295

    Article  CAS  Google Scholar 

  14. X. Zhang, B. Gao, J. Fang, W. Zou, L. Dong, C. Cao, J. Zhang, Y. Li, H. Wang, Chemically activated hydrochar as an effective adsorbent for volatile organic compounds (VOCs). Chemosphere. 218, 680–686 (2019). https://doi.org/10.1016/j.chemosphere.2018.11.144

    Article  CAS  PubMed  Google Scholar 

  15. G. Zhang, H. Yang, M. Jiang, Q. Zhang, Preparation and characterization of activated carbon derived from deashing coal slime with ZnCl2 activation. Colloid Surf. A 641, 128124 (2022). https://doi.org/10.1016/j.colsurfa.2021.128124

    Article  CAS  Google Scholar 

  16. S.S.R. Dehkordi, Q. Delavar, H.A. Ebrahim, S.S. Partash, CO2 adsorption by coal-based activated carbon modified with sodium hydroxide. Mater. Today Commun. 33, 104776 (2022). https://doi.org/10.1016/j.mtcomm.2022.104776

    Article  CAS  Google Scholar 

  17. H. Xing, G. Jiang, J. Xiong, Z. Zhu, L. Zhang, M. Chen, J. Zhu, The structure evolution from intrinsic micro-nano skeleton of natural wood to hierarchical porous carbon. Micropor. Mesopor. Mat. 112653 (2023). https://doi.org/10.1016/j.micromeso.2023.112653

  18. S.M. Lee, S.H. Lee, S. Park, S.-H. Yoon, D.-H. Jung, Preparation of mesoporous activated carbon by preliminary oxidation of petroleum coke with hydrogen peroxide and its application in capacitive deionization. Desalination. 539, 115901 (2022). https://doi.org/10.1016/j.desal.2022.115901

    Article  CAS  Google Scholar 

  19. H. Wu, H. Wei, X. Yang, C. Jin, W. Sun, K. Deng, X. Rong, G. Bin, C. Sun, Spherical activated carbons derived from resin-microspheres for the adsorption of acetic acid. J. Environ. Chem. Eng. 11, 109394 (2023). https://doi.org/10.1016/j.jece.2023.109394

    Article  CAS  Google Scholar 

  20. E.L.K. Mui, W.H. Cheung, M. Valix, G. McKay, Activated carbons from bamboo scaffolding using acid activation. Sep. Purif. Technol. 74, 213–218 (2010). https://doi.org/10.1016/j.seppur.2010.06.007

    Article  CAS  Google Scholar 

  21. P. Carmo, A.M. Ribeiro, U.H. Lee, K.H. Cho, A.E. Rodrigues, J.-S. Chang, A. Ferreira, Adsorptive processes for the recovery of VCM emissions using an environmentally friendly MIL-100(fe) MOF. Micropor. Mesopor Mat. 352, 112510 (2023). https://doi.org/10.1016/j.micromeso.2023.112510

    Article  CAS  Google Scholar 

  22. J. Cheng, H. Li, J. Zhou, Z. Lin, D. Wu, C. Liu, Z. Cao, Laser induced porous electrospun fibers for enhanced filtration of xylene gas. J. Hazard. Mater. 399, 122976 (2020). https://doi.org/10.1016/j.jhazmat.2020.122976

    Article  CAS  PubMed  Google Scholar 

  23. C. Guizani, M. Jeguirim, R. Gadiou, F.J. Escudero Sanz, S. Salvador, Biomass char gasification by H2O, CO2 and their mixture: evolution of chemical, textural and structural properties of the chars. Energy. 112, 133–145 (2016). https://doi.org/10.1016/j.energy.2016.06.065

    Article  CAS  Google Scholar 

  24. D. Feng, Y. Zhao, Y. Zhang, Z. Zhang, L. Zhang, J. Gao, S. Sun, Synergetic effects of biochar structure and AAEM species on reactivity of H2O-activated biochar from cyclone air gasification. Int. J. Hydrogen Energ. 42, 16045–16053 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.153

    Article  CAS  Google Scholar 

  25. X. Liu, S. Zuo, N. Cui, S. Wang, Investigation of ammonia/steam activation for the scalable production of high-surface area nitrogen-containing activated carbons. Carbon. 191, 581–592 (2022). https://doi.org/10.1016/j.carbon.2022.02.014

    Article  CAS  Google Scholar 

  26. P. Zhang, Y. Zhong, J. Ding, J. Wang, M. Xu, Q. Deng, Z. Zeng, S. Deng, A new choice of polymer precursor for solvent-free method: Preparation of N-enriched porous carbons for highly selective CO2 capture. Chem. Eng. J. 355, 963–973 (2019). https://doi.org/10.1016/j.cej.2018.08.219

    Article  CAS  Google Scholar 

  27. J. Wang, P. Zhang, L. Liu, Y. Zhang, J. Yang, Z. Zeng, S. Deng, Controllable synthesis of bifunctional porous carbon for efficient gas-mixture separation and high-performance supercapacitor. Chem. Eng. J. 348, 57–66 (2018). https://doi.org/10.1016/j.cej.2018.04.188

    Article  CAS  Google Scholar 

  28. B. Ulrich, T.C. Frank, A. McCormick, E.L. Cussler, Membrane-assisted VOC removal from aqueous acrylic latex. J. Membrane Sci. 452, 426–432 (2014). https://doi.org/10.1016/j.memsci.2013.10.025

    Article  CAS  Google Scholar 

  29. D. Sun, R. Ban, P.-H. Zhang, G.-H. Wu, J.-R. Zhang, J.-J. Zhu, Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon. 64, 424–434 (2013). https://doi.org/10.1016/j.carbon.2013.07.095

    Article  CAS  Google Scholar 

  30. C. Goel, H. Kaur, H. Bhunia, P.K. Bajpai, Carbon dioxide adsorption on nitrogen enriched carbon adsorbents: experimental, kinetics, isothermal and thermodynamic studies. J. CO2 Util. 16, 50–63 (2016). https://doi.org/10.1016/j.jcou.2016.06.002

  31. E. Jang, S.W. Choi, S.-M. Hong, S. Shin, K.B. Lee, Development of a cost-effective CO2 adsorbent from petroleum coke via KOH activation. Appl. Surf. Sci. 429, 62–71 (2018). https://doi.org/10.1016/j.apsusc.2017.08.075

    Article  CAS  Google Scholar 

  32. D. Li, J. Yang, Y. Zhao, H. Yuan, Y. Chen, Ultra-highly porous carbon from wasted soybean residue with tailored porosity and doped structure as renewable multi-purpose absorbent for efficient CO2, toluene and water vapor capture. J. Clean. Prod. 337, 130283 (2022). https://doi.org/10.1016/j.jclepro.2021.130283

    Article  CAS  Google Scholar 

  33. T.J. Bandosz, M. Seredych, E. Rodríguez-Castellón, Y. Cheng, L.L. Daemen, Ramírez-Cuesta, evidence for CO2 reactive adsorption on nanoporous S- and N-doped carbon at ambient conditions. Carbon. 96, 856–863 (2016). https://doi.org/10.1016/j.carbon.2015.10.007

    Article  CAS  Google Scholar 

  34. C. Cardenas, D. Farrusseng, C. Daniel, R. Aubry, Modeling of equilibrium water vapor adsorption isotherms on activated carbon, alumina and hopcalite. Fluid Phase Equilibr. 561, 113520 (2022). https://doi.org/10.1016/j.fluid.2022.113520

    Article  CAS  Google Scholar 

  35. W. Somyanonthanakun, R. Ahmed, V. Krongtong, S. Thongmee, Studies on the adsorption of pb(II) from aqueous solutions using sugarcane bagasse-based modified activated carbon with nitric acid: kinetic, isotherm and desorption. Chem. Phys. 6, 100181 (2023). https://doi.org/10.1016/j.chphi.2023.100181

    Article  Google Scholar 

  36. J. Mohammed, N.S. Nasri, M.A. Ahmad Zaini, U.D. Hamza, F.N. Ani, Adsorption of benzene and toluene onto KOH activated coconut shell based carbon treated with NH3. Int. Biodeter Biodegr. 102, 245–255 (2015). https://doi.org/10.1016/j.ibiod.2015.02.012

    Article  CAS  Google Scholar 

  37. C. Cardenas, L. Sigot, C. Vallières, S. Marsteau, M. Marchal, A.M. Latifi, Ammonia capture by adsorption on doped and undoped activated carbon: isotherm and breakthrough curve measurements. Sep. Purif. Technol. 313, 123454 (2023). https://doi.org/10.1016/j.seppur.2023.123454

    Article  CAS  Google Scholar 

  38. X. Ma, Y. Wu, M. Fang, B. Liu, R. Chen, R. Shi, Q. Wu, Z. Zeng, L. Li, In-situ activated ultramicroporous carbon materials derived from waste biomass for CO2 capture and benzene adsorption. Biomass Bioenerg. 158, 106353 (2022). https://doi.org/10.1016/j.biombioe.2022.106353

    Article  CAS  Google Scholar 

  39. B. Kim, Y.-R. Lee, H.-Y. Kim, W.-S. Ahn, Adsorption of volatile organic compounds over MIL-125-NH2. Polyhedron. 154, 343–349 (2018). https://doi.org/10.1016/j.poly.2018.08.010

    Article  CAS  Google Scholar 

  40. S. Zhang, Y. Lin, Q. Li, X. Jiang, Z. Huang, X. Wu, H. Zhao, G. Jing, H. Shen, Remarkable performance of N-doped carbonization modified MIL-101 for low-concentration benzene adsorption. Sep. Purif. Technol. 289, 120784 (2022). https://doi.org/10.1016/j.seppur.2022.120784

    Article  CAS  Google Scholar 

  41. D. Wang, G. Wu, Y. Zhao, L. Cui, C.-H. Shin, M.-H. Ryu, J. Cai, Study on the copper(II)-doped MIL-101(cr) and its performance in VOCs adsorption. Environ. Sci. Pollut R. 25, 28109–28119 (2018). https://doi.org/10.1007/s11356-018-2849-6

    Article  CAS  Google Scholar 

  42. G. Shi, S. He, G. Chen, C. Ruan, Y. Ma, Q. Chen, X. Jin, X. Liu, C. He, C. Du, H. Dai, X. Yang, Crayfish shell-based micro-mesoporous activated carbon: insight into preparation and gaseous benzene adsorption mechanism. Chem. Eng. J. 428, 131148 (2022). https://doi.org/10.1016/j.cej.2021.131148

    Article  CAS  Google Scholar 

  43. Z. Jin, B. Wang, L. Ma, P. Fu, L. Xie, X. Jiang, W. Jiang, Air pre-oxidation induced high yield N-doped porous biochar for improving toluene adsorption. Chem. Eng. J. 385, 123843 (2020). https://doi.org/10.1016/j.cej.2019.123843

    Article  CAS  Google Scholar 

  44. C. Wang, H. Yin, P. Tian, X. Sun, X. Pan, K. Chen, W.-J. Chen, Q.-H. Wu, S. Luo, Remarkable adsorption performance of MOF-199 derived porous carbons for benzene vapor. Environ. Res. 184, 109323 (2020). https://doi.org/10.1016/j.envres.2020.109323

    Article  CAS  PubMed  Google Scholar 

  45. S. Lu, X. Huang, M. Tang, Y. Peng, S. Wang, C.P. Makwarimba, Synthesis of N-doped hierarchical porous carbon with excellent toluene adsorption properties and its activation mechanism. Environ. Pollut. 284, 117113 (2021). https://doi.org/10.1016/j.envpol.2021.117113

    Article  CAS  PubMed  Google Scholar 

  46. B. Guo, J. Zhang, Y. Wang, X. Qiao, J. Xiang, Y. Jin, Study on CO2 adsorption capacity and kinetic mechanism of CO2 adsorbent prepared from fly ash. Energy. 263, 125764 (2023). https://doi.org/10.1016/j.energy.2022.125764

    Article  CAS  Google Scholar 

  47. A. Gómez-Avilés, M. Peñas-Garzón, C. Belver, J.J. Rodriguez, J. Bedia, Equilibrium, kinetics and breakthrough curves of acetaminophen adsorption onto activated carbons from microwave-assisted FeCl3-activation of lignin. Sep. Purif. Technol. 278, 119654 (2021). https://doi.org/10.1016/j.seppur.2021.119654

    Article  CAS  Google Scholar 

  48. K.H. Chu, Breakthrough curve analysis by simplistic models of fixed bed adsorption: in defense of the century-old Bohart-Adams model. Chem. Eng. J. 380, 122513 (2020). https://doi.org/10.1016/j.cej.2019.122513

    Article  CAS  Google Scholar 

Download references

Funding

This project was supported by Natural Science Foundation of the Jiangsu Higher Institutions of China (Grant No. 22KJA430001) and Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant No. SJCX23_1482). The financial support provided for this project by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP) is greatly appreciated. The authors would like to thank Shiyanjia Lab (www.shiyanjia.com) for the support of XPS test.

Author information

Authors and Affiliations

Authors

Contributions

X.Z. and J.C. wrote the main manuscript text and completed some of the experiments. S.L., Y.H. and J.H. prepared all figures; W.Z. and R.H. calculated all data.Z.C. and D.W. completed some of the experiments. C.L. designed the overall plan.

Corresponding authors

Correspondence to Chunlin Liu or Junfeng Cheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This declaration is not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Liu, S., Hu, Y. et al. Green synthesis of porous bamboo-based activated carbon with high VOCs adsorption performance via steam activation method. J Porous Mater 31, 737–746 (2024). https://doi.org/10.1007/s10934-024-01557-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-024-01557-0

Keywords

Navigation