Skip to main content
Log in

Investigation of structural and morphological insights of nanostructured layered double hydroxides: catalytic activity in aldol condensation

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Layered double hydroxides (LDHs) materials finds extensive applications in numerous fields such as medical science, industrial sector, agriculture and food, catalysis, polymers, nanotechnology, etc. The LDHs properties (structural, textural, morphological, spectroscopic and theoretical insights) can be design for achieving required materials for particular application in scientific areas. In the current investigation, we have synthesized mesoporous nanostructured LDHs materials via microwave, sonication and stirring method. The nanostructured LDHs was scientifically characterized by various physico-chemical techniques like XRD, N2 sorption, TGA, solid state one-dimensional 27Al magic angle spinning NMR spectroscopy, XPS, Raman Spectroscopy, FT-IR, ICP-OES, Electron Microscopy (SEM, FE-SEM, TEM and HR-TEM), EDX, elemental analysis, etc. On the basis of experimental study, it can be evidently witnessed that nanostructured LDHs materials was formed with good crystalline mesoporous nature. Solid state 27Al NMR showed single and sharp 27Al NMR signal at chemical shift value of + 1.4 ppm, strongly suggesting the presence of octahedral (Oh) AlO6 coordination site in all as-synthesized LDHs. Microwave and sonication techniques furnishes regularly dispersed well-developed flower-shaped nanocrystals however, stirring method gives mostly agglomerated nano-sized platelets. The mechanistic insights for the fabrication of nanostructures LDHs via microwave, sonication and stirring process were also highlighted. The different LDHs materials were utilized in the aldol condensation reaction of furfural with acetone for understanding structure–activity correlation. Microwave and sonication methodologies can be further exploited for the synthesis of many other inorganic–organic nanocomposites materials with stable and good dispersion of nanocrystals in addition to desired morphology and catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 4
Scheme 5

Similar content being viewed by others

References

  1. S. Nishimura, A. Takagaki, K. Ebitani, Green Chem. 15, 2026–2042 (2013). https://doi.org/10.1039/C3GC40405F

    Article  CAS  Google Scholar 

  2. S.N. Basahel, S.A. Al-Thabaiti, K. Narasimharao, N.S. Ahmed, M. Mokhtar, J. Nanosci. Nanotechnol. 14, 1931–1946 (2014). https://doi.org/10.1166/jnn.2014.9193

    Article  CAS  PubMed  Google Scholar 

  3. T. Baskaran, J. Christopher, A. Sakthivel, RSC Adv. 5, 98853–98875 (2015). https://doi.org/10.1039/C5RA19909C

    Article  CAS  Google Scholar 

  4. Q. Wang, H.H. Tay, Z. Guo, L. Chen, Y. Liu, J. Chang, Z. Zhong, J. Luo, A. Borgna, Appl. Clay Sci. 55, 18–26 (2012). https://doi.org/10.1016/j.clay.2011.07.024

    Article  CAS  Google Scholar 

  5. M.J. Climent, A. Corma, S. Iborra, K. Epping, A. Velty, J. Catal. 225, 316–326 (2004). https://doi.org/10.1016/j.jcat.2004.04.027

    Article  CAS  Google Scholar 

  6. S.V.V. Chilukuri, A.S. Nagpure, N.S. Lucas, Process for the preparation of 2,5-dimethylfuran and furfuryl alcohol over ruthenium supported catalysts. United States Patent No. US 9757713 B2. (2017). https://patents.google.com/patent/US9757713B2/fr

  7. S.V.V. Chilukuri, A.S. Nagpure, Transition metal(s) catalyst supported on nitrogen-doped mesoporous carbon and its use in catalytic transfer hydrogenation reactions. United States Patent No. US 11000831 B2. (2021). https://doi.org/10.13140/RG.2.2.17951.48803

  8. A.S. Nagpure, P. Gogoi, N.G. Gode, A.N. Korpenwar, Res. J. Life Sci. Bioinf. Pharm. Chem. Sci. 4, 31–37 (2018). https://doi.org/10.26479/2018.0401.03

    Article  CAS  Google Scholar 

  9. A.S. Nagpure, V.M. Mohture, A. Kayarkar, Inorg. Chem. Commun. 146, 110118 (2022). https://doi.org/10.1016/j.inoche.2022.110118

    Article  CAS  Google Scholar 

  10. A.S. Nagpure, P. Gogoi, S.V. Chilukuri, Chem. Asian J. 16, 2702–2722 (2021). https://doi.org/10.1002/asia.202100552

    Article  CAS  PubMed  Google Scholar 

  11. N. Lucas, A.S. Nagpure, L. Gurrala, P. Gogoi, S.V. Chilukuri, J. Porous Mater. 27, 1691–1700 (2020). https://doi.org/10.1007/s10934-020-00943-8

    Article  CAS  Google Scholar 

  12. A.S. Nagpure, A.K. Venugopal, N. Lucas, M. Manikandan, R. Thirumalaiswamy, S.V. Chilukuri, Catal. Sci. Technol. 5, 1463–1472 (2015). https://doi.org/10.1039/C4CY01376J

    Article  CAS  Google Scholar 

  13. C. Chen, P. Ding, S. Xu, J. Du, H. Zeng, Y. Sun, Appl. Clay. Sci. 161, 404–411 (2018). https://doi.org/10.1016/j.clay.2018.05.016

    Article  CAS  Google Scholar 

  14. V. Vágvölgyi, S.J. Palmer, J. Kristóf, R.L. Frost, E. Horváth, J. Colloid Interface Sci. 318, 302–308 (2008). https://doi.org/10.1016/j.jcis.2007.10.033

    Article  CAS  PubMed  Google Scholar 

  15. L. Jin, X. Zhou, F. Wang, X. Ning, Y. Wen, B. Song, C. Yang, D. Wu, X. Ke, L. Peng, Nature Commun. 13, 6093 (2022). https://doi.org/10.1038/s41467-022-33912-7

    Article  CAS  Google Scholar 

  16. K.K. Ramasamy, M. Gray, H. Job, D. Santosa, X.S. Li, A. Devaraj, A. Karkamkar, Y. Wang, Top. Catal. 59, 46–54 (2016). https://doi.org/10.1007/s11244-015-0504-8

    Article  CAS  Google Scholar 

  17. K.J.D. MacKenzie, R.H. Meinhold, B.L. Sherriffb, Z. Xu, J. Mater. Chem. 3(12), 1263–1269 (1993). https://doi.org/10.1039/JM9930301263

    Article  CAS  Google Scholar 

  18. T.-J. Park, S.-S. Choi, Y. Kim, Bull Korean Chem. Soc. 30(1), 149–152 (2009). https://doi.org/10.5012/bkcs.2009.30.1.149

    Article  CAS  Google Scholar 

  19. J. Chen, Y. Song, D. Shan, E.-H. Han, Corros. Sci. 63, 148–158 (2012). https://doi.org/10.1016/j.corsci.2012.05.022

    Article  CAS  Google Scholar 

  20. K.-W. Jung, S.Y. Lee, J.-W. Choi, M.-J. Hwang, W.G. Shim, Chem. Eng. J. 420, 129775 (2021)

    Article  CAS  Google Scholar 

  21. M. Mora, C. Jiménez-Sanchidrián, J.R. Ruiz, Mater. Lett. 120, 193–195 (2014). https://doi.org/10.1016/j.matlet.2014.01.085

    Article  CAS  Google Scholar 

  22. G.A. Tompsett, W.C. Conner, K.S. Yngvesson, ChemPhysChem 7, 296–319 (2006). https://doi.org/10.1002/cphc.200500449

    Article  CAS  PubMed  Google Scholar 

  23. R. Al-Gaashani, S. Radiman, N. Tabet, A.R. Daud, Mater. Chem. Phy. 125, 846–852 (2011). https://doi.org/10.1016/j.matchemphys.2010.09.038

    Article  CAS  Google Scholar 

  24. V.S. Marques, L.S. Cavalcante, J.C. Sczancoski, D.P. Volanti, J.W.M. Espinosa, M.R. Joya, M.R.M.C. Santos, P.S. Pizani, J.A. Varela, E. Longo, Solid State Sci. 10, 1056–1061 (2008). https://doi.org/10.1016/j.solidstatesciences.2007.11.004

    Article  CAS  Google Scholar 

  25. E.T. Thostenson, T.-W. Chou, Compos. Part A: Appl. Sci. Manuf. 30, 1055–1071 (1999). https://doi.org/10.1016/S1359-835X(99)00020-2

    Article  Google Scholar 

  26. H.S. Panda, R. Srivastava, D. Bahadur, J. Nanosci. Nanotechnol. 8, 4218–4223 (2008). https://doi.org/10.1166/jnn.2008.AN22

    Article  CAS  PubMed  Google Scholar 

  27. J.A. Fuentes-García, J. Santoyo-Salzar, E. Rangel-Cortes, G.F. Goya, V. Cardozo-Mata, J.A. Pescador-Rojas, Ultrason. Sonochem. 70, 105 (2021). https://doi.org/10.1016/j.ultsonch.2020.105274

    Article  CAS  Google Scholar 

  28. H.K. Feng, S.R. Yu, Y.L. Li, L.Y. Gong, J. Mater. Proc. Technol. 208, 330–335 (2008). https://doi.org/10.1016/j.jmatprotec.2007.12.121

    Article  CAS  Google Scholar 

  29. X. Ni, H. Zheng, Y. Shan, X. Jin, X. Xiao, G. Liao, Chem. Lett. 38(3), 242–243 (2009). https://doi.org/10.1246/cl.2009.242

    Article  CAS  Google Scholar 

  30. M. Arumugam, O. Kikhtyanin, A. Osatiashtiani, V. Kyselová, V. Fila, I. Paterova, K.-L. Wong, D. Kubička, Sustain. Energy Fuels 7, 3047–3059 (2023). https://doi.org/10.1039/D3SE00444A

    Article  CAS  Google Scholar 

  31. D.S. Desai, G.D. Yadav, Ind. Eng. Chem. Res. 58(35), 16096–16105 (2019). https://doi.org/10.1021/acs.iecr.9b01138

    Article  CAS  Google Scholar 

  32. D.N. Thanh, O. Kikhtyanin, R. Ramos, M. Kothari, P. Ulbrich, T. Munshi, D. Kubička, Catal. Today 277, 97–107 (2016). https://doi.org/10.1016/j.cattod.2015.11.027

    Article  CAS  Google Scholar 

  33. X.M. Huang, Q. Zhang, T.J. Wang, Q.Y. Liu, Q. Zhang, J. Fuel Chem. Technol. 40(8), 973–978 (2012). https://doi.org/10.1016/S1872-5813(12)60035-8

    Article  CAS  Google Scholar 

  34. K. Jaroslav, K. Jiří, A. Uliana, T. Zdeněk, Catalysts 10(12), 1484 (2020). https://doi.org/10.3390/catal10121484

    Article  CAS  Google Scholar 

  35. W. Li, M. Su, T. Zhang, Q. Ma, W. Fan, Fuel 237, 1281–1290 (2019). https://doi.org/10.1016/j.fuel.2018.10.094

    Article  CAS  Google Scholar 

  36. I. Sádaba, M. Ojeda, R. Mariscal, R. Richards, M.L. Granados, Catal. Today 167(1), 77–83 (2011). https://doi.org/10.1016/j.cattod.2010.11.059

    Article  CAS  Google Scholar 

  37. A. Tampieri, M. Lilic, M. Constantí, F. Medina, Crystals 10(9), 833 (2020). https://doi.org/10.3390/cryst10090833

    Article  CAS  Google Scholar 

  38. L. Faba, E. Díaz, S. Ordonez, Appl. Catal. B: Environ. 113, 201–211 (2012). https://doi.org/10.1016/j.apcatb.2011.11.039

    Article  CAS  Google Scholar 

  39. O. Kikhtyanin, D. Kubicka, J. Cejka, Catal. Today 243, 158–162 (2015). https://doi.org/10.1016/j.cattod.2014.08.016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Atul S. Nagpure acknowledged CSIR-National Chemical Laboratory (CSIR-NCL), Pune-411008, INDIA for support with instrumentation techniques. We thank University Grant Commission (UGC), New Delhi, INDIA for financial support. Authors also acknowledged assistance from Dr. Ajay Saini (Scientific Officer, Central Analytical Facilities, Manipal University, Jaipur, Rajasthan) and Mr. Moti Kumar Jha (Scientific Officer, SAIF, Manipal University, Jaipur, Rajasthan) for materials characterizations.

Author information

Authors and Affiliations

Authors

Contributions

ASN: conceptualization, synthesis of materials, data curation, methodology, investigation, validation, visualization, supervision, writing—original draft, writing—review & editing. SKB: synthesis of materials, investigation, funding acquisition, validation and resources. NGG: synthesis of materials, investigation, funding acquisition, validation and resources. MRL: conceptualization, methodology, visualization and supervision. SRT: conceptualization and supervision.

Corresponding authors

Correspondence to Atul S. Nagpure or Mamata R. Lanjewar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhagat, S.K., Nagpure, A.S., Lanjewar, M.R. et al. Investigation of structural and morphological insights of nanostructured layered double hydroxides: catalytic activity in aldol condensation. J Porous Mater 31, 759–778 (2024). https://doi.org/10.1007/s10934-023-01545-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-023-01545-w

Keywords

Navigation