Skip to main content
Log in

Synthesis, characterization, and gas (SO2, CO2, NO2, CH4, CO, NO, and N2) adsorption properties of the CTF-1 covalent triazine framework-based porous polymer: experimental and DFT studies

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In this study, a covalent-triazine framework (i.e., CTF-1) was synthesized through the ionothermal cyclotrimerization method utilizing 1,4-dicyanobenzene (DCB) as the monomer and molten ZnCl2 as both the solvent and Lewis acid catalyst at 400 ℃. The obtained microporous crystalline material was systematically characterized by employing Fourier-transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), N2 adsorption–desorption isotherms (BET-NLDFT surface area-pore size measurements), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), solid-state 13C NMR spectroscopy, elemental analysis (EA), and thermogravimetric analysis (TGA). The adsorption equilibrium and kinetic data for SO2, CO2, NO2, CH4, CO, NO, and N2 gases onto the surfaces of CTF-1 were volumetrically measured at 25 and 35 ℃ and gas pressures of up to 1 bar. To systematically realize the gas adsorption characteristics of CTF-1, various isotherm models, including the Langmuir, Sips, and Toth models, were employed to correlate the experimental adsorption isotherms. Besides, different kinetic models such as pseudo-first-order (PFO), pseudo-second-order (PSO), and fractal-like pseudo-first-order (FL-PFO) models were applied to analyze the experimental adsorption kinetic data. In the meantime, to further investigate the adsorption mechanism of gases upon the CTF-1 surface, density-functional theory (DFT) calculations were performed at ωB97XD level of theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Jeffry, M.Y. Ong, S. Nomanbhay, M. Mofijur, M. Mubashir, P.L. Show, Greenhouse gases utilization: a review. Fuel 301, 121017 (2021). https://doi.org/10.1016/j.fuel.2021.121017

    Article  CAS  Google Scholar 

  2. A. Kumar, A. Thanki, H. Padhiyar, N.K. Singh, S. Pandey, M. Yadav, Z.-G. Yu, Greenhouse gases emission control in WWTS via potential operational strategies: a critical review. Chemosphere 273, 129694 (2021). https://doi.org/10.1016/j.chemosphere.2021.129694

    Article  CAS  PubMed  Google Scholar 

  3. T. Cowan, S. Undorf, G.C. Hegerl, L.J. Harrington, F.E. Otto, Present-day greenhouse gases could cause more frequent and longer dust bowl heatwaves. Nat. Clim. Chang. 10(6), 505–510 (2020). https://doi.org/10.1038/s41558-020-0771-7

    Article  CAS  Google Scholar 

  4. S. Pourebrahimi, M. Pirooz, S. Ahmadi, M. Kazemeini, L. Vafajoo, Nanoengineering of metal-based electrocatalysts for carbon dioxide (CO2) reduction: a critical review. Mater. Today Phys. (2023). https://doi.org/10.1016/j.mtphys.2023.101250

    Article  Google Scholar 

  5. S. Pourebrahimi, M. Kazemeini, M. Zaroudi, H. Bozorgzadeh, Methane adsorption on carbonaceous microporous materials prepared from cellulose and lignin: equilibrium and kinetic studies. Sci. Iran. 25(6), 3368–3380 (2018). https://doi.org/10.24200/SCI.2018.5131.1114

    Article  Google Scholar 

  6. M. Holmberg, A. Akujärvi, S. Anttila, I. Autio, M. Haakana, V. Junttila, N. Karvosenoja, P. Kortelainen, A. Mäkelä, K. Minkkinen, Sources and sinks of greenhouse gases in the landscape: approach for spatially explicit estimates. Sci. Total. Environ. 781, 146668 (2021). https://doi.org/10.1016/j.scitotenv.2021.146668

    Article  CAS  PubMed  Google Scholar 

  7. J. Deng, X. Wang, Z. Wei, L. Wang, C. Wang, Z. Chen, A review of NOx and SOx emission reduction technologies for marine diesel engines and the potential evaluation of liquefied natural gas fuelled vessels. Sci. Total. Environ. 766, 144319 (2021). https://doi.org/10.1016/j.scitotenv.2020.144319

    Article  CAS  PubMed  Google Scholar 

  8. D.J. Tao, F.F. Chen, Z.Q. Tian, K. Huang, S.M. Mahurin, D.E. Jiang, S. Dai, Highly efficient carbon monoxide capture by carbanion-functionalized ionic liquids through C-site interactions. Angew. Chem. 129(24), 6947–6951 (2017). https://doi.org/10.1002/ange.201701919

    Article  Google Scholar 

  9. X. Zhang, B. Gao, A.E. Creamer, C. Cao, Y. Li, Adsorption of VOCs onto engineered carbon materials: a review. J. Hazard. Mater. 338, 102–123 (2017). https://doi.org/10.1016/j.jhazmat.2017.05.013

    Article  CAS  PubMed  Google Scholar 

  10. S. Pourebrahimi, Upcycling face mask wastes generated during COVID-19 into value-added engineering materials: a review. Sci. Total. Environ. 851, 158396 (2022). https://doi.org/10.1016/j.scitotenv.2022.158396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. S. Pourebrahimi, M. Pirooz, Functionalized covalent triazine frameworks as promising platforms for environmental remediation: a review. Clean. Chem. Eng. 2, 100012 (2022). https://doi.org/10.1016/j.clce.2022.100012

    Article  Google Scholar 

  12. G. Férey, C. Serre, T. Devic, G. Maurin, H. Jobic, P.L. Llewellyn, G. De Weireld, A. Vimont, M. Daturi, J.-S. Chang, Why hybrid porous solids capture greenhouse gases? Chem. Soc. Rev. 40(2), 550–562 (2011). https://doi.org/10.1039/C0CS00040J

    Article  PubMed  Google Scholar 

  13. X. Li, L. Zhang, Z. Yang, P. Wang, Y. Yan, J. Ran, Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: a review. Sep. Purif. Technol. 235, 116213 (2020). https://doi.org/10.1016/j.seppur.2019.116213

    Article  CAS  Google Scholar 

  14. G. Zhang, Y. Sun, P. Zhao, Y. Xu, A. Su, J. Qu, Characteristics of activated carbon modified with alkaline KMnO4 and its performance in catalytic reforming of greenhouse gases CO2/CH4. J. CO2 Util. 20, 129–140 (2017). https://doi.org/10.1016/j.jcou.2017.05.013

    Article  CAS  Google Scholar 

  15. H. Rezvani, S. Fatemi, J. Tamnanloo, Activated carbon surface modification by catalytic chemical vapor deposition of natural gas for enhancing adsorption of greenhouse gases. J. Environ. Chem. Eng. 7(3), 103085 (2019). https://doi.org/10.1016/j.jece.2019.103085

    Article  CAS  Google Scholar 

  16. M. Idrees, V. Rangari, S. Jeelani, Sustainable packaging waste-derived activated carbon for carbon dioxide capture. J. CO2 Util. 26, 380–387 (2018). https://doi.org/10.1016/j.jcou.2018.05.016

    Article  CAS  Google Scholar 

  17. S. Kumar, R. Srivastava, J. Koh, Utilization of zeolites as CO2 capturing agents advances and future perspectives. J. CO2 Util. 41, 101251 (2020). https://doi.org/10.1016/j.jcou.2020.101251

    Article  CAS  Google Scholar 

  18. S.M. Wilson, F.H. Tezel, Direct dry air capture of CO2 using VTSA with faujasite zeolites. Ind. Eng. Chem. Res. 59(18), 8783–8794 (2020). https://doi.org/10.1021/acs.iecr.9b04803

    Article  CAS  Google Scholar 

  19. P. Murge, S. Dinda, S. Roy, Zeolite-based sorbent for CO2 capture: preparation and performance evaluation. Langmuir 35(46), 14751–14760 (2019). https://doi.org/10.1021/acs.langmuir.9b02259

    Article  CAS  PubMed  Google Scholar 

  20. T.K. Pal, D. De, P.K. Bharadwaj, Metal–organic frameworks for the chemical fixation of CO2 into cyclic carbonates. Coord. Chem. Rev. 408, 213173 (2020). https://doi.org/10.1016/j.ccr.2019.213173

    Article  CAS  Google Scholar 

  21. S. Pourebrahimi, M. Kazemeini, L. Vafajoo, Embedding graphene nanoplates into MIL-101 (Cr) pores: synthesis, characterization, and CO2 adsorption studies. Ind. Eng. Chem. Res. 56(14), 3895–3904 (2017). https://doi.org/10.1021/acs.iecr.6b04538

    Article  CAS  Google Scholar 

  22. S. Pourebrahimi, M. Kazemeini, E.G. Babakhani, A. Taheri, Removal of the CO2 from flue gas utilizing hybrid composite adsorbent MIL-53 (Al)/GNP metal-organic framework. Microporous Mesoporous Mater. 218, 144–152 (2015). https://doi.org/10.1016/j.micromeso.2015.07.013

    Article  CAS  Google Scholar 

  23. J. Wang, S. Zhuang, Covalent organic frameworks (COFs) for environmental applications. Coord. Chem. Rev. 400, 213046 (2019). https://doi.org/10.1016/j.ccr.2019.213046

    Article  CAS  Google Scholar 

  24. Y. Zeng, R. Zou, Y. Zhao, Covalent organic frameworks for CO2 capture. Adv. Mater. 28(15), 2855–2873 (2016). https://doi.org/10.1002/adma.201505004

    Article  CAS  PubMed  Google Scholar 

  25. J.L. Mendoza-Cortes, T.A. Pascal, W.A. Goddard III., Design of covalent organic frameworks for methane storage. J. Phys. Chem. A 115(47), 13852–13857 (2011). https://doi.org/10.1021/jp209541e

    Article  CAS  PubMed  Google Scholar 

  26. X. Sheng, H. Shi, L. Yang, P. Shao, K. Yu, X. Luo, Rationally designed conjugated microporous polymers for contaminants adsorption. Sci. Total. Environ. 750, 141683 (2021). https://doi.org/10.1016/j.scitotenv.2020.141683

    Article  CAS  PubMed  Google Scholar 

  27. S. Qiao, W. Huang, Z. Du, X. Chen, F.-K. Shieh, R. Yang, Phosphine oxide-based conjugated microporous polymers with excellent CO2 capture properties. New J. Chem. 39(1), 136–141 (2015). https://doi.org/10.1039/C4NJ01477D

    Article  CAS  Google Scholar 

  28. H. Wang, D. Jiang, D. Huang, G. Zeng, P. Xu, C. Lai, M. Chen, M. Cheng, C. Zhang, Z. Wang, Covalent triazine frameworks for carbon dioxide capture. J. Mater. Chem. A 7(40), 22848–22870 (2019). https://doi.org/10.1039/C9TA06847C

    Article  CAS  Google Scholar 

  29. K. Wang, Y. Tang, Q. Jiang, Y. Lan, H. Huang, D. Liu, C. Zhong, A thiophene-containing covalent triazine-based framework with ultramicropore for CO2 capture. J. Energy Chem. 26(5), 902–908 (2017). https://doi.org/10.1016/j.jechem.2017.07.007

    Article  Google Scholar 

  30. A. Mukhtar, N.B. Mellon, M.A. Bustam, S. Saqib, S.-P. Lee, F.A. Kareem, S. Ullah, Impact of amine functionality on the selective CO2/CH4 adsorption behavior of porous covalent triazine adsorbent. J. Nat. Gas Sci. Eng. 83, 103582 (2020). https://doi.org/10.1016/j.jngse.2020.103582

    Article  CAS  Google Scholar 

  31. Y. Zhang, S. Jin, Recent advancements in the synthesis of covalent triazine frameworks for energy and environmental applications. Polymers 11(1), 31 (2018). https://doi.org/10.3390/polym11010031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. S. Pourebrahimi, M. Pirooz, Reversible iodine vapor capture using bipyridine-based covalent triazine framework: experimental and computational investigations. Chem. Eng. J. Adv. 8, 100150 (2021). https://doi.org/10.1016/j.ceja.2021.100150

    Article  CAS  Google Scholar 

  33. M. Liu, L. Guo, S. Jin, B. Tan, Covalent triazine frameworks: synthesis and applications. J. Materi. Chem. A 7(10), 5153–5172 (2019). https://doi.org/10.1039/C8TA12442F

    Article  CAS  Google Scholar 

  34. C. Krishnaraj, H.S. Jena, K. Leus, P. Van Der Voort, Covalent triazine frameworks–a sustainable perspective. Green Chem. 22(4), 1038–1071 (2020). https://doi.org/10.1039/C9GC03482J

    Article  Google Scholar 

  35. S. Pourebrahimi, M. Pirooz, A. De Visscher, G.H. Peslherbe, Highly efficient and reversible iodine capture utilizing amorphous conjugated covalent triazine-based porous polymers: Experimental and computational studies. J. Environ. Chem. Eng. 10(3), 107805 (2022). https://doi.org/10.1016/j.jece.2022.107805

    Article  CAS  Google Scholar 

  36. P. Kuhn, M. Antonietti, A. Thomas, Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 47(18), 3450–3453 (2008). https://doi.org/10.1002/anie.200705710

    Article  CAS  Google Scholar 

  37. S. Kuecken, J. Schmidt, L. Zhi, A. Thomas, Conversion of amorphous polymer networks to covalent organic frameworks under ionothermal conditions: a facile synthesis route for covalent triazine frameworks. J. Mater. Chem. A 3(48), 24422–24427 (2015). https://doi.org/10.1039/C5TA07408H

    Article  CAS  Google Scholar 

  38. S. Ren, M.J. Bojdys, R. Dawson, A. Laybourn, Y.Z. Khimyak, D.J. Adams, A.I. Cooper, Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis. Adv. Mater. 24(17), 2357–2361 (2012). https://doi.org/10.1002/adma.201200751

    Article  CAS  PubMed  Google Scholar 

  39. P. Puthiaraj, S.-S. Kim, W.-S. Ahn, Covalent triazine polymers using a cyanuric chloride precursor via Friedel-Crafts reaction for CO2 adsorption/separation. Chem. Eng. J. 283, 184–192 (2016). https://doi.org/10.1016/j.cej.2015.07.069

    Article  CAS  Google Scholar 

  40. S.N. Talapaneni, T.H. Hwang, S.H. Je, O. Buyukcakir, J.W. Choi, A. Coskun, Elemental-sulfur-mediated facile synthesis of a covalent triazine framework for high-performance lithium–sulfur batteries. Angew. Chem. Int. Ed. 55(9), 3106–3111 (2016). https://doi.org/10.1002/anie.201511553

    Article  CAS  Google Scholar 

  41. T. Zhou, Y. Zhao, J.W. Choi, A. Coskun, Lithium-salt mediated synthesis of a covalent triazine framework for highly stable lithium metal batteries. Angew. Chem. 131(47), 16951–16955 (2019). https://doi.org/10.1002/ange.201908513

    Article  Google Scholar 

  42. R. Gomes, P. Bhanja, A. Bhaumik, A triazine-based covalent organic polymer for efficient CO2 adsorption. Chem. Commun. 51(49), 10050–10053 (2015). https://doi.org/10.1039/C5CC02147B

    Article  CAS  Google Scholar 

  43. T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33(5), 580–592 (2012). https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  44. D.Y. Osadchii, A.I. Olivos-Suarez, A.V. Bavykina, J. Gascon, Revisiting nitrogen species in covalent triazine frameworks. Langmuir 33(50), 14278–14285 (2017). https://doi.org/10.1021/acs.langmuir.7b02929

    Article  CAS  PubMed  Google Scholar 

  45. M.J. Bojdys, J. Jeromenok, A. Thomas, M. Antonietti, Rational extension of the family of layered, covalent, triazine-based frameworks with regular porosity. Adv. Mater. 22(19), 2202–2205 (2010). https://doi.org/10.1002/adma.200903436

    Article  CAS  PubMed  Google Scholar 

  46. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87(9–10), 1051–1069 (2015). https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  47. S. Pourebrahimi, M. Kazemeini, A kinetic study of facile fabrication of MIL-101 (Cr) metal-organic framework: effect of synthetic method. Inorg. Chim. Acta 471, 513–520 (2018). https://doi.org/10.1016/j.ica.2017.11.033

    Article  CAS  Google Scholar 

  48. S. Pourebrahimi, M. Pirooz, Synthesis of a novel freestanding conjugated triazine-based microporous membrane through superacid-catalyzed polymerization for superior CO2 separation. Chem. Eng. J. Adv. 11, 100315 (2022). https://doi.org/10.1016/j.ceja.2022.100315

    Article  CAS  Google Scholar 

  49. C. Yin, Z. Zhang, J. Zhou, Y. Wang, Single-layered nanosheets of covalent triazine frameworks (CTFs) by mild oxidation for molecular-sieving membranes. ACS Appl. Mater. Interfaces 12(16), 18944–18951 (2020). https://doi.org/10.1021/acsami.0c03246

    Article  CAS  PubMed  Google Scholar 

  50. G. Tuci, M. Pilaski, H. Ba, A. Rossin, L. Luconi, S. Caporali, C. Pham-Huu, R. Palkovits, G. Giambastiani, Unraveling surface basicity and bulk morphology relationship on covalent triazine frameworks with unique catalytic and gas adsorption properties. Adv. Func. Mater. 27(7), 1605672 (2017). https://doi.org/10.1002/adfm.201605672

    Article  CAS  Google Scholar 

  51. Y. Fu, Z. Wang, S. Li, X. He, C. Pan, J. Yan, G. Yu, Functionalized covalent triazine frameworks for effective CO2 and SO2 removal. ACS Appl. Mater. Interfaces 10(42), 36002–36009 (2018). https://doi.org/10.1021/acsami.8b13417

    Article  CAS  PubMed  Google Scholar 

  52. H. Zhu, W. Lin, Q. Li, Y. Hu, S. Guo, C. Wang, F. Yan, Bipyridinium-based ionic covalent triazine frameworks for CO2, SO2, and NO capture. ACS Appl. Mater. Interfaces 12(7), 8614–8621 (2020). https://doi.org/10.1021/acsami.9b15903

    Article  CAS  PubMed  Google Scholar 

  53. J. Shen, A. Dailly, M. Beckner, Natural gas sorption evaluation on microporous materials. Microporous Mesoporous Mater. 235, 170–177 (2016). https://doi.org/10.1016/j.micromeso.2016.08.013

    Article  CAS  Google Scholar 

  54. E.D. Revellame, D.L. Fortela, W. Sharp, R. Hernandez, M.E. Zappi, Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: a review. Clean. Eng. Technol. 1, 100032 (2020). https://doi.org/10.1016/j.clet.2020.100032

    Article  Google Scholar 

  55. L. Largitte, R. Pasquier, A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem. Eng. Res. Des. 109, 495–504 (2016). https://doi.org/10.1016/j.cherd.2016.02.006

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SP: conceptualization, methodology, supervision, writing the first draft, review and editing the final draft MP: investigation, resources, methodology MK: supervision, review and editing the final draft LV: supervision, review and editing the final draft.

Corresponding authors

Correspondence to Sina Pourebrahimi or Mohammad Kazemeini.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 798 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourebrahimi, S., Pirooz, M., Kazemeini, M. et al. Synthesis, characterization, and gas (SO2, CO2, NO2, CH4, CO, NO, and N2) adsorption properties of the CTF-1 covalent triazine framework-based porous polymer: experimental and DFT studies. J Porous Mater 31, 643–657 (2024). https://doi.org/10.1007/s10934-023-01538-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-023-01538-9

Keywords

Navigation