Skip to main content
Log in

Aqueous synthesis of mesoporous FeNbO4 for efficient degradation of organic contaminants in sunlight assisted advanced oxidation process at near neutral pH

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The development of catalysts for treating hazardous organic effluents contained in wastewater via the light-induced advanced oxidation processes (AOPs) has been at the forefront of recent research. The heterogeneous photo-Fenton process is one of the most effective AOPs used in the abatement of wastewater pollutants. However, there is a frequent requirement for acidic pH and ultraviolet (UV) irradiation, both of which hinder its industrial viability. Thus, there is a demand for a stable solar light-activated photo-Fenton catalyst capable of operating under near-neutral pH. This is the first demonstration of the mesoporous FeNbO4 used for solar-driven photocatalytic reaction under an oxidative environment at near neutral pH. The present work reports the preparation of pure-phase mesoporous FeNbO4 with a high specific surface area through a wet chemical technique. The cationic surfactant tetradecyl trimethylammonium bromide (TTAB) has been employed as the structure-directing agent in the present synthesis that produces a mesoporous structure with a surface area of 97 m2/g, an average pore diameter of ~ 6.5 nm and an average pore volume of 0.139 cm3/g. The synthesized mesoporous FeNbO4 has been characterized by thermo-gravimetric analysis (TGA), Fourier Transform Infrared Spectrophotometer (FTIR), X-ray diffractometer (XRD), Branauer-Emmett-Teller analysis (BET), transmission electron microscope (TEM), and UV-vis spectroscopy. Our synthesized material exhibits high activity towards the degradation of organic dyes in the presence of H2O2 under natural sunlight irradiation in an optimized catalytic scheme. The complete degradation of the mixture of dyes was achieved by direct sunlight irradiation at near natural pH (5.7) in the presence of a catalyst (3 g/L) and 50 mM H2O2 for 1 h. The present article also reports the measurement of its point zero surface charge and the role of reactive species in the degradation of organic dyes. The synthesized material has been found to be a promising, stable, and recyclable photo-Fenton catalyst for the removal of organic pollutants from wastewater under solar light irradiation and near neutral pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile, J.C. Polonio, Biotechnol. Res. Innov. 3, 275 (2019)

    Google Scholar 

  2. A. Malik, R. Akhtar, E. Grohmann, Environmental deterioration and human health (Springer, Dordrecht, 2014)

    Google Scholar 

  3. M. Berradi, R. Hsissou, M. Khudhair, M. Assouag, O. Cherkaoui, A. El Bachiri, A. El Harfi, Heliyon 5, e02711 (2019)

    PubMed  PubMed Central  Google Scholar 

  4. V. Katheresan, J. Kansedo, S.Y. Lau, J. Environ. Chem. Eng. 6, 4676 (2018)

    CAS  Google Scholar 

  5. I.K. Konstantinou, T.A. Albanis, Appl. Catal. B 49, 1 (2004)

    CAS  Google Scholar 

  6. L.C. Juang, D.H. Tseng, J.F. Lee, Chemosphere. 36, 1187 (1998)

    CAS  Google Scholar 

  7. X. Wang, X. Zhang, Y. Zhang, Y. Wang, S.-P. Sun, W.D. Wu, Z. Wu, J. Mater. Chem. A Mater. 8, 15513 (2020)

    CAS  Google Scholar 

  8. W. Huang, M. Brigante, F. Wu, C. Mousty, K. Hanna, G. Mailhot, Environ. Sci. Technol. 47, 1952 (2013)

    CAS  PubMed  Google Scholar 

  9. Y. Zhang, Y. Su, Y. Wang, J. He, G.L. McPherson, V.T. John, RSC Adv. 7, 39049 (2017)

    CAS  Google Scholar 

  10. M.L.A. Ramalho, V.S. Madeira, I.L.O. Brasileiro, P.C.R. Fernandes, C.B.M. Barbosa, S. Arias, J.G.A. Pacheco, J. Photochem. Photobiol A Chem. 404, 112873 (2021)

    CAS  Google Scholar 

  11. J. Singh, S. Sharma, Aanchal, S. Basu, J. Photochem. Photobiol A Chem. 376, 32 (2019)

    CAS  Google Scholar 

  12. S. Zheng, H. Chen, X. Tong, Z. Wang, J.C. Crittenden, M. Huang, Appl. Catal. B 281, 119519 (2021)

    CAS  Google Scholar 

  13. C. Revilla Pacheco, M.R. Riveros Cruz, J. Cárdenas Garcia, R. Terán Hilares, G. de Colina Andrade, D.A.P. Tanaka, A. Mogrovejo-Valdivia, Arab. J. Chem. 16, 105049 (2023)

    CAS  Google Scholar 

  14. E. Da Cruz Severo, G.L. Dotto, S. Silvestri, I. Dos Santos Nunes, J. Da Silveira Salla, A. Martinez-De La Cruz, K. Da Boit Martinello, E.L. Foletto, J. Environ. Chem. Eng. 8, 103853 (2020)

    Google Scholar 

  15. Y. Zhang, N. Zhang, T. Wang, H. Huang, Y. Chen, Z. Li, Z. Zou, Appl. Catal. B 245, 410 (2019)

    CAS  Google Scholar 

  16. E.N. Silva, I.L.O. Brasileiro, V.S. Madeira, B.A. De Farias, M.L.A. Ramalho, E. Rodríguez-Aguado, E. Rodríguez-Castellón, J. Environ. Chem. Eng. 8, 104132 (2020)

    CAS  Google Scholar 

  17. W. Gao, J. Tian, Y. Fang, T. Liu, X. Zhang, X. Xu, X. Zhang, Chemosphere. 243, 125334 (2020)

    CAS  PubMed  Google Scholar 

  18. M.U. Rahman, U.Y. Qazi, T. Hussain, N. Nadeem, M. Zahid, H.N. Bhatti, I. Shahid, Opt. Mater. 120, 111408 (2021)

    CAS  Google Scholar 

  19. A. Angkaew, C. Chokejaroenrat, C. Sakulthaew, J. Mao, T. Watcharatharapong, A. Watcharenwong, S. Imman, N. Suriyachai, T. Kreetachat, J. Environ. Chem. Eng. 9, 105621 (2021)

    CAS  Google Scholar 

  20. S. Kanti Biswas, T. Gnanasekaran, T. Kumar, Ghorai, P. Pramanik, J. Electrochem. Soc. 155, J26 (2008)

    Google Scholar 

  21. S.K. Biswas, J.O. Baeg, B.B. Kale, R.K. Yadav, S.J. Moon, K.J. Kong, W.W. So, Catal. Commun. 12, 651 (2011)

    CAS  Google Scholar 

  22. Y. Inoue, Energy Environ. Sci. 2, 364 (2009)

    CAS  Google Scholar 

  23. T. Sri Devi Kumari, R. Vinith Gandhi, G. Rahul, G. Kamalanathan, T. Prem Kumar, D. Jeyakumar, N. Lakshminarasimhan, Mater. Chem. Phys. 145, 425 (2014)

    CAS  Google Scholar 

  24. K.I. Gnanasekar, V. Jayaraman, E. Prabhu, T. Gnanasekaran, G. Periaswami, Sens. Actuators B Chem. 55, 170 (1999)

    CAS  Google Scholar 

  25. T. Wang, T. Ge, S. Shi, M. Wu, G. Yang, J. Alloys Compd. 740, 7 (2018)

    CAS  Google Scholar 

  26. T. Wang, S. Shi, F. Kong, G. Yang, B. Qian, F. Yin, Electrochim. Acta. 203, 206 (2016)

    CAS  Google Scholar 

  27. R. Babu, S. Kelkar, V. Kashid, S.N. Achary, H.G. Salunke, N.M. Gupta, RSC Adv. 4, 33435 (2014)

    CAS  Google Scholar 

  28. I.-S. Cho, S. Lee, J.H. Noh, G.K. Choi, H.S. Jung, D.W. Kim, K.S. Hong, J. Phys. Chem. C 112, 18393 (2008)

    CAS  Google Scholar 

  29. W.J. Zhang, X. Sun, B.H. Chen, Adv. Mater. Res. 2021, 113–116 (2021)

    Google Scholar 

  30. B.M.F. Jones, D. Maruthamani, V. Muthuraj, J. Photochem. Photobiol A Chem. 400, 112712 (2020)

    CAS  Google Scholar 

  31. A. Sarkar, P. Pramanik, Microporous Mesoporous Mater. 117, 580 (2009)

    CAS  Google Scholar 

  32. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys. 14, 2745 (2002)

    CAS  Google Scholar 

  33. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    CAS  PubMed  Google Scholar 

  34. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Google Scholar 

  35. M. Thommes, Chem. Ing. Tech. 82, 1059 (2010)

    CAS  Google Scholar 

  36. A. Grosman, C. Ortega, Langmuir. 24, 3977 (2008)

    CAS  PubMed  Google Scholar 

  37. S. Ananta, R. Brydson, N.W. Thomas, J. Eur. Ceram. Soc. 19, 489 (1999)

    CAS  Google Scholar 

  38. S.K. Biswas, J.O. Baeg, Int. J. Hydrogen Energy. 38, 14451 (2013)

    CAS  Google Scholar 

  39. O. Merka, V. Yarovyi, D.W. Bahnemann, M. Wark, J. Phys. Chem. C 115, 8014 (2011)

    CAS  Google Scholar 

  40. Y. Chen, R. Huang, D. Chen, Y. Wang, W. Liu, X. Li, Z. Li, ACS Appl. Mater. Interfaces. 4, 2273 (2012)

    CAS  PubMed  Google Scholar 

  41. K. Yu, S. Yang, H. He, C. Sun, C. Gu, Y. Ju, J. Phys. Chem. A 113, 10024 (2009)

    CAS  PubMed  Google Scholar 

  42. X. Hu, T. Mohamood, W. Ma, C. Chen, J. Zhao, J. Phys. Chem. B 110, 26012 (2006)

    CAS  PubMed  Google Scholar 

  43. K.T. Nguyen, C.T.H. Nguyen, C.N. Pham, L.T. Duong, B.Q. Nguyen, H.B. Le, M.V.N. Nguyen, N.N. Dao, Res. Chem. Intermed. 49, 57 (2023)

    CAS  Google Scholar 

  44. W.A. Shaikh, S. Chakraborty, R.U. Islam, Int. J. Environ. Sci. Technol. 17, 2059 (2020)

    CAS  Google Scholar 

  45. S.H. Ahmed, M. Bakiro, A. Alzamly, Materialia 12, 100781 (2020)

    CAS  Google Scholar 

  46. G. Boczkaj, A. Fernandes, Chem. Eng. J. 320, 608 (2017)

    CAS  Google Scholar 

  47. A.T. Vu, T.N. Xuan, C.H. Lee, J. Water Process Eng. 28, 169 (2019)

    Google Scholar 

  48. X. Wu, Z. Nan, Mater. Chem. Phys. 227, 302 (2019)

    CAS  Google Scholar 

  49. J. De Laat, H. Gallard, Environ. Sci. Technol. 33, 2726 (1999)

    Google Scholar 

  50. X. Zhong, S. Royer, H. Zhang, Q. Huang, L. Xiang, S. Valange, J. Barrault, Sep. Purif. Technol. 80, 163 (2011)

    CAS  Google Scholar 

  51. A. Omri, W. Hamza, M. Benzina, J. Photochem. Photobiol A Chem. 393, 112444 (2020)

    CAS  Google Scholar 

  52. O. Špalek, J. Balej, I. Paseka, J. Chem. Soc. Faraday Trans. 1 78, 2349 (1982)

    Google Scholar 

  53. P.P. Selvam, S. Preethi, P. Basakaralingam, N. Thinakaran, A. Sivasamy, S. Sivanesan, J. Hazard. Mater. 155, 39 (2008)

    CAS  PubMed  Google Scholar 

  54. S. Subramanian, J. Catal.  114, 433 (1988)

    CAS  Google Scholar 

  55. T. Mahmood, M.T. Saddique, A. Naeem, P. Westerhoff, S. Mustafa, A. Alum, Ind. Eng. Chem. Res. 50, 10017 (2011)

    CAS  Google Scholar 

  56. M. Wang, G. Fang, P. Liu, D. Zhou, C. Ma, D. Zhang, J. Zhan, Appl. Catal. B 188, 113 (2016)

    CAS  Google Scholar 

  57. T. Xu, R. Zhu, G. Zhu, J. Zhu, X. Liang, Y. Zhu, H. He, Appl. Catal. B 212, 50 (2017)

    CAS  Google Scholar 

  58. Z. Wu, W. Zhu, M. Zhang, Y. Lin, N. Xu, F. Chen, D. Wang, Z. Chen, Ind. Eng. Chem. Res. 57, 5539 (2018)

    CAS  Google Scholar 

  59. W. Yuan, C. Zhang, H. Wei, Q. Wang, K. Li, RSC Adv. 7, 22825 (2017)

    CAS  Google Scholar 

  60. S. Luňák, P. Sedlák, J. Photochem. Photobiol A Chem. 68, 1 (1992)

    Google Scholar 

  61. L. Guo, K. Zhang, X. Han, Q. Zhao, D. Wang, F. Fu, Y. Liang, J. Alloys Compd. 816, 152560 (2020)

    CAS  Google Scholar 

  62. T.T.N. Phan, A.N. Nikoloski, P.A. Bahri, D. Li, RSC Adv. 8, 36181 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Q. Chen, P. Wu, Y. Li, N. Zhu, Z. Dang, J. Hazard. Mater. 168, 901 (2009)

    CAS  PubMed  Google Scholar 

  64. T. Taher, A. Yoshida, A. Lesbani, I. Kurnia, G. Guan, A. Abudula, W. Ueda, J. Hazard. Mater. 415, 125635 (2021)

    CAS  PubMed  Google Scholar 

  65. S. Ben Ayed, M. Azam, S.I. Al-Resayes, F. Ayari, L. Rizzo, Catalysts. 11, 1358 (2021)

    CAS  Google Scholar 

  66. Z. Izghri, G. Enaime, M. Eouarrat, L. Chahid, L. El Gaini, A. Baçaoui, A. Yaacoubi, J. Chem. (2021). https://doi.org/10.1155/2021/5588176

    Article  Google Scholar 

  67. A. Khan, Z. Valicsek, O. Horváth, Nanomaterials 10, 921 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  68. A. Choquehuanca, J.G. Ruiz-Montoya, A. La Rosa-Toro Gómez, Open Chem. 19, 1009 (2021)

    CAS  Google Scholar 

  69. Z. Chen, Y. Zheng, Y. Liu, W. Zhang, Y. Wang, X. Guo, X. Tang, Y. Zhang, Z. Wang, T. Zhang, Mater. Chem. Phys. 238, 121893 (2019)

    CAS  Google Scholar 

  70. W. Miao, Y. Liu, X. Chen, Y. Zhao, S. Mao, Carbon N Y. 159, 461 (2020)

    CAS  Google Scholar 

  71. A.J. dos Santos, L.M.B. Batista, C.A. Martínez-Huitle, A.P. de Alves, S. Garcia-Segura, Catalysts. 9, 1070 (2019)

    CAS  Google Scholar 

  72. Z. Cheng, S. Li, T.T. Nguyen, X. Gao, S.Y. Luo, M. Guo, Colloids Surf. A Physicochem Eng. Asp. 631, 127651 (2021)

    CAS  Google Scholar 

  73. A.M. Díez, H.E. Valencia, M. Meledina, J. Mayer, Y.V. Kolen’ko, Catalysts 11, 1 (2021)

    Google Scholar 

Download references

Acknowledgements

N.G. and B.C. would like to acknowledge the TMA Pai research fellowship fund of Sikkim Manipal University for providing financial assistance. SKB would like to acknowledge the TMA Pai research grant of Sikkim Manipal University for financial support to this research project.

Author information

Authors and Affiliations

Authors

Contributions

NG: Synthesis and execution of photocatalytic experiments, manuscript preparation. AS: Conceptualization, synthesis, analysis, manuscript preparation. BC: DFT calculation. BS: DFT calculation, analysis, and manuscript preparation (DFT part). SKB: Conceptualization, result analysis, manuscript preparation and supervision of the work.

Corresponding author

Correspondence to Arpita Sarkar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 996.9 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., Sarkar, A., Chettri, B. et al. Aqueous synthesis of mesoporous FeNbO4 for efficient degradation of organic contaminants in sunlight assisted advanced oxidation process at near neutral pH. J Porous Mater 31, 597–610 (2024). https://doi.org/10.1007/s10934-023-01537-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-023-01537-w

Keywords

Navigation