Skip to main content
Log in

Direct hydrothermal synthesis of Titanate Nanotubes with high selectivity for oxidative desulfurization

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Direct hydrothermal synthesized H-Titanate nanotube catalysts (H-TiNTs) were prepared and evaluated in model diesel for dibenzothiophene (DBT) oxidation. The effects of adding model components of 1-octylene, xylene, or cyclohexane in real diesel for sulfur removal were also evaluated. H-TiNTs were synthesized via the acid-catalyzed hydrolysis of tetra butyl titanate (TBOT) under static hydrothermal conditions with a seeding crystal. H-TiNTs and the control catalyst were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscope, Raman spectrum (Roman), and N2 adsorption-desorption. The removal of DBT was maintained at nearly 100% under optimal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All of the material is owned by the authors and/or no permissions are required.

References

  1. I.V. Babich, J.A. Moulijn, Science and technology of novel processes for deep desulfurization of oil refinery streams: a review. Fuel 82, 607–631 (2003). https://doi.org/10.1016/S0016-2361(02)00324-1

    Article  CAS  Google Scholar 

  2. Alumina-carbon nanofiber composite as a support for MoCo catalysts in hydrodesulfurization reactions-Web of Science. https://www.webofscience.com/wos/woscc/full-record/WOS:000430696500025. Accessed 9 Nov 2022

  3. D.T. Tran, J.M. Palomino, S.R.J. Oliver, Desulfurization of JP-8 jet fuel: challenges and adsorptive materials. RSC Adv. 8, 7301–7314 (2018). https://doi.org/10.1039/c7ra12784g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. J. Zou, Y. Lin, S. Wu et al., Construction of bifunctional 3-D ordered mesoporous catalyst for oxidative desulfurization. Sep. Purif. Technol. 264, 118434 (2021). https://doi.org/10.1016/j.seppur.2021.118434

    Article  CAS  Google Scholar 

  5. M.A. Rezvani, S. Hosseini, H.H. Ardeshiri, Highly efficient catalytic oxidative desulfurization of gasoline using PMnW11@PANI@CS as a New Inorganic-Organic Hybrid Nanocatalyst. Energy Fuels 36, 7722–7732 (2022). https://doi.org/10.1021/acs.energyfuels.2c00997

    Article  CAS  Google Scholar 

  6. M.A. Rezvani, S. Khandan, M. Rahim, Synthesis of (gly)(3)PMo12O40@MnFe2O4 organic/inorganic hybrid nanocomposite as an efficient and magnetically recoverable catalyst for oxidative desulfurization of liquid fuels. Int. J. Energy Res. 46, 2617–2632 (2022). https://doi.org/10.1002/er.7332

    Article  CAS  Google Scholar 

  7. E. Lorencon, D.C.B. Alves, K. Krambrock et al., Oxidative desulfurization of dibenzothiophene over titanate nanotubes. Fuel 132, 53–61 (2014). https://doi.org/10.1016/j.fuel.2014.04.020

    Article  CAS  Google Scholar 

  8. M. Sluban, B. Cojocaru, V.I. Parvulescu et al., Protonated titanate nanotubes as solid acid catalyst for aldol condensation. J. Catal. 346, 161–169 (2017). https://doi.org/10.1016/j.jcat.2016.12.015

    Article  CAS  Google Scholar 

  9. M. Salmasi, S. Fatemi, Y. Mortazavi, Fabrication of promoted TiO2 nanotubes with superior catalytic activity against TiO2 nanoparticles as the catalyst of oxidesulfurization process. J. Ind. Eng. Chem. 39, 66–76 (2016). https://doi.org/10.1016/j.jiec.2016.05.011

    Article  CAS  Google Scholar 

  10. H.-H. Ou, S.-L. Lo, Review of titania nanotubes synthesized via the hydrothermal treatment: fabrication, modification, and application. Sep. Purif. Technol. 58, 179–191 (2007). https://doi.org/10.1016/j.seppur.2007.07.017

    Article  CAS  Google Scholar 

  11. J.-H. Lee, I.-C. Leu, M.-C. Hsu et al., Fabrication of aligned TiO2 one-dimensional nanostructured arrays using a one-step templating solution approach. J. Phys. Chem. B 109, 13056–13059 (2005). https://doi.org/10.1021/jp052203l

    Article  CAS  PubMed  Google Scholar 

  12. D. Gong, C.A. Grimes, O.K. Varghese et al., Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331–3334 (2001). https://doi.org/10.1557/JMR.2001.0457

    Article  CAS  Google Scholar 

  13. A. Baszczuk, M. Jasiorski, B. Borak, J. Wodka, Insights into the multistep transformation of titanate nanotubes into nanowires and nanoribbons. Mater. Sci. 34, 691–702 (2016). https://doi.org/10.1515/msp-2016-0094

    Article  CAS  Google Scholar 

  14. R. Camposeco, S. Castillo, I. Mejia-Centeno et al., Synthesis of protonated titanate nanotubes tailored by the washing step: Effect upon acid properties and photocatalytic activity. J. Photochem. Photobiol A-Chem 341, 87–96 (2017). https://doi.org/10.1016/j.jphotochem.2017.03.012

    Article  CAS  Google Scholar 

  15. T. Kasuga, M. Hiramatsu, A. Hoson et al., Formation of titanium oxide nanotube. Langmuir 14, 3160–3163 (1998). https://doi.org/10.1021/la9713816

    Article  CAS  Google Scholar 

  16. T.H.T. Vu, H.T. Au, L.T. Tran et al., Synthesis of titanium dioxide nanotubes via one-step dynamic hydrothermal process. J. Mater. Sci. 49, 5617–5625 (2014). https://doi.org/10.1007/s10853-014-8274-4

    Article  CAS  Google Scholar 

  17. M.S. Mahmoud, E. Ahmed, A.A. Farghali et al., Synthesis of Fe/Co-doped titanate nanotube as redox catalyst for photon-induced water splitting. Mater. Chem. Phys 217, 125–132 (2018). https://doi.org/10.1016/j.matchemphys.2018.06.058

    Article  CAS  Google Scholar 

  18. S.-H. Chien, Y.-C. Liou, M.-C. Kuo (2005) Preparation and characterization of nanosized Pt/Au particles on TiO 2-nanotubes. In: Proceedings of the International Conference on Science and Technology of Synthetic Metals. Elsevier Ltd, pp 333–336

  19. B. Barrocas, L.D. Chiavassa, M. Conceicao Oliveira, O.C. Monteiro (2020) Impact of Fe, Mn co-doping in titanate nanowires photocatalytic performance for emergent organic pollutants removal. Chemosphere 250:. https://doi.org/10.1016/j.chemosphere.2020.126240

  20. Effect of nitrogen doping on the microstructure and visible light photocatalysis of titanate nanotubes by a facile cohydrothermal synthesis via urea treatment-Web of Science. https://www.webofscience.com/wos/woscc/full-record/WOS:000321045700026. Accessed 9 Nov 2022

  21. Oxidative desulfurization of model fuels with pure nano-TiO2 as catalyst directly without UV irradiation-Web of Science. https://www.webofscience.com/wos/woscc/full-record/WOS:000366651400002. Accessed 9 Nov 2022

  22. U. Arellano, J.A. Wang, M.T. Timko et al., Oxidative removal of dibenzothiophene in a biphasic system using sol-gel FeTiO2 catalysts and H2O2 promoted with acetic acid. Fuel 126, 16–25 (2014). https://doi.org/10.1016/j.fuel.2014.02.028

    Article  CAS  Google Scholar 

  23. W. Tang, Y. Yao, X. Huang, Hydrogen-assisted thermocatalysis over Titanium Nanotube for oxidative desulfurization. Catalysts 12, 29 (2022). https://doi.org/10.3390/catal12010029

    Article  CAS  Google Scholar 

  24. M.A. Rezvani, N. Khalafi, Deep oxidative desulfurization of real fuel and thiophenic model fuels using polyoxometalate-based catalytic nanohybrid material. Mater. Today Commun. 22, 100730 (2020). https://doi.org/10.1016/j.mtcomm.2019.100730

    Article  CAS  Google Scholar 

  25. M.A. Rezvani, M. Shaterian, Z.S. Aghbolagh, F. Akbarzadeh, Synthesis and characterization of New Inorganic-Organic hybrid nanocomposite PMo11Cu@MgCu2O4@CS as an efficient heterogeneous nanocatalyst for ODS of Real fuel. ChemistrySelect 4, 6370–6376 (2019). https://doi.org/10.1002/slct.201900202

    Article  CAS  Google Scholar 

  26. Synthesis and characterization of new organic-inorganic nanohybrid film (TBA)PWFe/PVA/CTS as an efficient and reusable amphiphilic catalyst for ODS of real fuel-Web of Science. https://www.webofscience.com/wos/woscc/full-record/WOS:000486635500001. Accessed 23 Feb 2023

  27. M.A. Rezvani, S. Khandan, Synthesis and characterization of new sandwich-type polyoxometalate/nanoceramic nanocomposite, Fe2W18Fe4@FeTiO3, as a highly efficient heterogeneous nanocatalyst for desulfurization of fuel. Solid State Sci 98, 106036 (2019). https://doi.org/10.1016/j.solidstatesciences.2019.106036

    Article  CAS  Google Scholar 

  28. M.A. Rezvani, N. Jafari, Synthesis and characterization of New Substituted Sandwich-Type Polyoxometalate-Based Inorganic-Organic Hybrid Nanocomposites for Catalytic oxidative desulfurization of real gasoline. Ind. Eng. Chem. Res. 60, 7599–7610 (2021). https://doi.org/10.1021/acs.iecr.1c01167

    Article  CAS  Google Scholar 

  29. M.A. Rezvani, M. Hadi, H. Rezvani, Synthesis of new nanocomposite based on ceramic and heteropolymolybdate using leaf extract of Aloe vera as a high-performance nanocatalyst to desulfurization of real fuel. Appl. Organomet. Chem. 35, e6176 (2021). https://doi.org/10.1002/aoc.6176

    Article  CAS  Google Scholar 

  30. M.A. Rezvani, A. Imani, Ultra-deep oxidative desulfurization of real fuels by sandwich-type polyoxometalate immobilized on copper ferrite nanoparticles, Fe6W18O70 subset of CuFe2O4, as an efficient heterogeneous nanocatalyst. J. Environ. Chem. Eng. 9, 105009 (2021). https://doi.org/10.1016/j.jece.2020.105009

    Article  CAS  Google Scholar 

  31. X.-M. Tai, Z.-P. Du, W. Wang, Synthesis of Nanocrystal TiO2 and Study of Photocatalytic Degradation Property. Tenside Surfactants Deterg 46, 290–293 (2009). https://doi.org/10.3139/113.110033

    Article  CAS  Google Scholar 

  32. K.A. Michalow, D. Logvinovich, A. Weidenkaff et al., Synthesis, characterization and electronic structure of nitrogen-doped TiO2 nanopowder. Catal. Today 144, 7–12 (2009). https://doi.org/10.1016/j.cattod.2008.12.015

    Article  CAS  Google Scholar 

  33. J. Aguado-Serrano, M.L. Rojas-Cervantes, Titania aerogels: influence of synthesis parameters on textural, crystalline, and surface acid properties. Microporous Mesoporous Mater 88, 205–213 (2006). https://doi.org/10.1016/j.micromeso.2005.09.011

    Article  CAS  Google Scholar 

  34. Y. Chen, Y. Deng, Y. Pu et al., One pot preparation of silver nanoparticles decorated TiO2 mesoporous microspheres with enhanced antibacterial activity. Mater. Sci. Eng. C-Mater Biol. Appl. 65, 27–32 (2016). https://doi.org/10.1016/j.msec.2016.04.028

    Article  CAS  PubMed  Google Scholar 

  35. Y. Kamimura, W. Chaikittisilp, K. Itabashi et al., Critical factors in the seed-assisted synthesis of Zeolite Beta and “Green Beta” from OSDA-Free Na+-Aluminosilicate Gels. Chem-Asian J. 5, 2182–2191 (2010). https://doi.org/10.1002/asia.201000234

    Article  CAS  PubMed  Google Scholar 

  36. X. Zaiku, C. Qingling, C. Bo, Z. Chengfang, Influence of alkalinity on particle size distribution and crystalline structure in synthesis of zeolite beta. Cryst. Eng 4, 359–372 (2001). https://doi.org/10.1016/S1463-0184(01)00027-2

    Article  Google Scholar 

  37. S. Zhang, Q. Chen, L.M. Peng, Structure and formation of H2Ti3O7 nanotubes in an alkali environment. Phys. Rev. B 71, 014104 (2005). https://doi.org/10.1103/PhysRevB.71.014104

    Article  CAS  Google Scholar 

  38. T. Ohno, Y. Masaki, S. Hirayama, M. Matsumura, TiO2-photocatalyzed epoxidation of 1-decene by H2O2 under visible light. J. Catal. 204, 163–168 (2001). https://doi.org/10.1006/jcat.2001.3384

    Article  CAS  Google Scholar 

  39. M. Li, X. Yan, M. Zhu, D. Zhou, Theoretical investigation on the spectroscopic properties and catalytic activities of the Ti-Hydroperoxo intermediates in titanosilicate zeolites. Microporous Mesoporous Mat 299, 110133 (2020). https://doi.org/10.1016/j.micromeso.2020.110133

    Article  CAS  Google Scholar 

  40. S. Lu, H. Zhong, D. Mo et al., A H-titanate nanotube with superior oxidative desulfurization selectivity. Green. Chem. 19, 1371–1377 (2017). https://doi.org/10.1039/c6gc03573f

    Article  CAS  Google Scholar 

  41. F. Bonino, A. Damin, G. Ricchiardi et al. (2004) Ti-peroxo species in the TS-1/H2O2/H2O system. J. Phys. Chem. B 108:3573–3583. https://doi.org/10.1021/jp036166e

    Article  CAS  Google Scholar 

  42. M. Zuo, X. Huang, J. Li et al., Oxidative desulfurization in diesel via a titanium dioxide triggered thermocatalytic mechanism. Catal. Sci. Technol. 9, 2923–2930 (2019). https://doi.org/10.1039/c9cy00298g

    Article  CAS  Google Scholar 

  43. B. Huang, X. Jia, Y. Li et al., Chiral Mesoporous Silicates Immobilizing Titanium Dioxide for Catalytic Asymmetric Epoxidation of Alkenes. Catal. Surv. Asia 21, 13–27 (2017). https://doi.org/10.1007/s10563-016-9222-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (No.21902118).

Funding

National Natural Science Foundation of China, No.21902118.

Author information

Authors and Affiliations

Authors

Contributions

Yinuo Zhang, Yibo Xin, and Yue Yao wrote the main manuscript text. Jialin Cao, Yaning Liu, Shuxiang Lv, Zhen Li, and Xiaoyuan Liao prepared figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yue Yao.

Ethics declarations

Ethical approval

Not applicable to human/animal studies.

Competing Interests

The authors have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Xin, Y., Cao, J. et al. Direct hydrothermal synthesis of Titanate Nanotubes with high selectivity for oxidative desulfurization. J Porous Mater 30, 1525–1532 (2023). https://doi.org/10.1007/s10934-023-01447-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-023-01447-x

Keywords

Navigation