Skip to main content

Advertisement

Log in

CoII immobilized on aminated mesoporous SBA-16 (SBA-16/GPTMS-NH2–CoII): a highly efficient mesostructured catalyst for the C–O bond formation under solvent-free conditions

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Herein an able, facile, coherent, and environmentally benign synthesis of the C–O coupling reaction based on the functionalized mesoporous silica SBA-16 (CoII immobilized on mesoporous SBA-16 functionalized by aminated 3-glycidyloxypropyltrimethoxysilane with aminoguanidine nitrate), is described. The mesostructured nanocatalyst (SBA-16/GPTMS-NH2–CoII) is characterized by various analytical techniques such as FT-IR, small-angle XRD, XRD, BET, TEM, FE-SEM, EDX, EDX-mapping, and ICP-OES analysis. Cage-like mesoporous SBA-16 efficiently managed dispersed the metal and organic species in the well-ordered siliceous frameworks. It was found that the aforementioned mesostructured catalyst with a special structure and particle size distribution (3–8 nm) displayed great catalytic performance to promote of the C–O cross-coupling reaction from the iodobenzene and phenol in solvent-free conditions. Plus, SBA-16/GPTMS-NH2–CoII as an inimitable heterogeneous nanocatalyst can be readily separated from the reaction mixture by simple filtration under reaction conditions and recycled at least five times without any loss of its catalytic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9
Fig. 10
Scheme 3
Fig. 11

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available with the article, as well as the Supplementary Information file, or available from the corresponding authors upon reasonable request. Source data are provided in this paper.

References

  1. J.-P. Corbet, G. Mignani, Selected patented cross-coupling reaction technologies. Chem. Rev. 106, 2651–2710 (2006)

    CAS  PubMed  Google Scholar 

  2. M. Mondal, S.K. Bharadwaj, U. Bora, O-arylation with nitroarenes: metal-catalyzed and metal-free methodologies. New J. Chem. 39, 31–37 (2014)

    Google Scholar 

  3. F. Monnier, M. Taillefer, Catalytic C–C, C–N, and C–O Ullmann-type coupling reactions. Angew. Chem. Int. Ed. 48, 6954–6971 (2009)

    CAS  Google Scholar 

  4. C.-W. Qian, W.-L. Lv, Q.-S. Zong, M.-Y. Wang, D. Fang, Copper-catalyzed Ullmann-type synthesis of diaryl ethers assisted by salicylaldimine ligands. Chin. Chem. Lett. 25, 337–340 (2014)

    CAS  Google Scholar 

  5. C. Sambiagio, S.P. Marsden, A.J. Blacker, P.C. McGowan, Copper catalysed Ullmann type chemistry: from mechanistic aspects to modern development. Chem. Soc. Rev. 43, 3525–3550 (2014)

    CAS  PubMed  Google Scholar 

  6. D.L. Boger, M.A. Patane, J. Zhou, Total synthesis of bouvardin, O-methylbouvardin, and O-methyl-N9-desmethylbouvardin. J. Am. Chem. Soc. 116, 8544–8556 (1994)

    CAS  Google Scholar 

  7. D. Kikelj, Recent progress in diaryl ether synthesis. Synthesis 2006, 2271–2285 (2006)

    Google Scholar 

  8. F.M. Moghaddam, M. Eslami, Immobilized palladium nanoparticles on MNPs@ A-N-AEB as an efficient catalyst for C-O bond formation in water as a green solvent. Appl. Organomet. Chem. 32, e4463 (2018)

    Google Scholar 

  9. P.M. MacQueen, J.P. Tassone, C. Diaz, M. Stradiotto, Exploiting ancillary ligation to enable nickel-catalyzed C-O cross-couplings of aryl electrophiles with aliphatic alcohols. J. Am. Chem. Soc. 140, 5023–5027 (2018)

    CAS  PubMed  Google Scholar 

  10. H. Sun, Y. Sun, X. Tian, Y. Zhao, X. Qi, Nanosized ferric hydroxide catalyzed CO cross-coupling of phenol and halides to generate phenoxy ether. Asian J. Chem. 25, 6189–6191 (2013)

    CAS  Google Scholar 

  11. M.S. Hofmayer, A. Sunagatullina, D. Brösamlen, P. Mauker, P. Knochel, Stereoselective cobalt-catalyzed cross-coupling reactions of arylzinc chlorides with α-bromolactones and related derivatives. Org. Lett. 22, 1286–1289 (2020)

    CAS  PubMed  Google Scholar 

  12. A. Mohammadinezhad, B. Akhlaghinia, Fe3O4@ boehmite-NH2-Co II NPs: an inexpensive and highly efficient heterogeneous magnetic nanocatalyst for the Suzuki-Miyaura and Heck-Mizoroki cross-coupling reactions. Green Chem. 19, 5625–5641 (2017)

    CAS  Google Scholar 

  13. P. Qiu, B. Ma, C.-T. Hung, W. Li, D. Zhao, Spherical mesoporous materials from single to multilevel architectures. Acc. Chem. Res. 52, 2928–2938 (2019)

    CAS  PubMed  Google Scholar 

  14. H. Yang, X. Zhang, S. Li, X. Wang, J. Ma, The high catalytic activity and reusability of the proline functionalized cage-like mesoporous material SBA-16 for the asymmetric aldol reaction proceeding in methanol–water mixed solvent. RSC Adv. 4, 9292–9299 (2014)

    CAS  Google Scholar 

  15. Z. Wang, L. Wang, P. Li, Silica-anchored proline-copper (I) as an efficient and recyclable catalyst for the Sonogashira reaction. Synthesis 2008, 1367–1372 (2008)

    Google Scholar 

  16. F. Zhang, J. Yin, W. Chai, H. Li, Self-assembly of palladium nanoparticles on periodic mesoporous organosilica using an in situ reduction approach: catalysts for Ullmann reactions in water. Chemsuschem 3, 724–727 (2010)

    CAS  PubMed  Google Scholar 

  17. P.-H. Liao, H.-M. Yang, Preparation of catalyst Ni–Cu/CNTs by chemical reduction with formaldehyde for steam reforming of methanol. Catal. Lett. 121, 274–282 (2008)

    CAS  Google Scholar 

  18. S.S. Ghodsinia, B. Akhlaghinia, Cu I anchored onto mesoporous SBA-16 functionalized by aminated 3-glycidyloxypropyltrimethoxysilane with thiosemicarbazide (SBA-16/GPTMS-TSC-Cu I): a heterogeneous mesostructured catalyst for S-arylation reaction under solvent-free conditions. Green Chem. 21, 3029–3049 (2019)

    CAS  Google Scholar 

  19. Z. Ma, H. Yang, Y. Qin, Y. Hao, G. Li, Palladium nanoparticles confined in the nanocages of SBA-16: enhanced recyclability for the aerobic oxidation of alcohols in water. J. Mol. Catal. A 331, 78–85 (2010)

    CAS  Google Scholar 

  20. A. Vinu, T. Mori, K. Ariga, New families of mesoporous materials. Sci. Technol. Adv. Mater. 7, 753–771 (2006)

    CAS  Google Scholar 

  21. D. Zhao, Q. Huo, J. Feng, B. Chmelka, G. Stucky, Tri-, tetra-, and octablock copolymer and nonionic surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120, 6024–6036 (1998)

    CAS  Google Scholar 

  22. T.-W. Kim et al., Tailoring the pore structure of SBA-16 silica molecular sieve through the use of copolymer blends and control of synthesis temperature and time. J. Phys. Chem. B 108, 11480–11489 (2004)

    CAS  Google Scholar 

  23. H. Yang et al., Asymmetric reactions on chiral catalysts entrapped within a mesoporous cage. Chem. Commun. (2007). https://doi.org/10.1039/b614635j

    Article  Google Scholar 

  24. H. Yang, L. Zhang, W. Su, Q. Yang, C. Li, Asymmetric ring-opening of epoxides on chiral Co (Salen) catalyst synthesized in SBA-16 through the “ship in a bottle” strategy. J. Catal. 248, 204–212 (2007)

    CAS  Google Scholar 

  25. H. Yang, L. Zhang, L. Zhong, Q. Yang, C. Li, Enhanced cooperative activation effect in the hydrolytic kinetic resolution of epoxides on [Co (salen)] catalysts confined in nanocages. Angew. Chem. 119, 6985–6989 (2007)

    Google Scholar 

  26. R. Azevedo, R. Sousa, W. Macedo, E. Sousa, Combining mesoporous silica–magnetite and thermally-sensitive polymers for applications in hyperthermia. J. Sol-Gel. Sci. Technol. 72, 208–218 (2014)

    CAS  Google Scholar 

  27. F. Azimov, I. Markova, V. Stefanova, K. Sharipov, Synthesis and characterization of SBA-15 and Ti-SBA-15 nanoporous materials for DME catalysts. J. Univ. Chem. Technol. Metall. 47, 333–340 (2012)

    CAS  Google Scholar 

  28. F. Bérubé, S. Kaliaguine, Calcination and thermal degradation mechanisms of triblock copolymer template in SBA-15 materials. Microporous Mesoporous Mater. 115, 469–479 (2008)

    Google Scholar 

  29. N. Koshy, D. Singh, Fly ash zeolites for water treatment applications. J. Environ. Chem. Eng. 4, 1460–1472 (2016)

    CAS  Google Scholar 

  30. S. Sadjadi, Palladium nanoparticles immobilized on cyclodextrin-decorated halloysite nanotubes: efficient heterogeneous catalyst for promoting copper-and ligand-free Sonogashira reaction in water–ethanol mixture. Appl. Organomet. Chem. 32, e4211 (2018)

    Google Scholar 

  31. A.A. Alqadami, M. Naushad, Z.A. Alothman, A.A. Ghfar, Novel metal–organic framework (MOF) based composite material for the sequestration of U (VI) and Th (IV) metal ions from aqueous environment. ACS Appl. Mater. Interfaces 9, 36026–36037 (2017)

    CAS  PubMed  Google Scholar 

  32. Z. Çelik, M. Gülfen, A.O. Aydın, Synthesis of a novel dithiooxamide–formaldehyde resin and its application to the adsorption and separation of silver ions. J. Hazard. Mater. 174, 556–562 (2010)

    PubMed  Google Scholar 

  33. Q. Yao, Z.H. Lu, K. Yang, X. Chen, M. Zhu, Sci. Rep. 5, 15186 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. M. Bagherzadeh, H. Mahmoudi, M. Amini, S. Gautam, K.H. Chae, Sci. Iran. 25, 1335–1343 (2018)

    Google Scholar 

  35. J. Balamurugan, R. Thangamuthu, A. Pandurangan, RSC Adv. 3, 4321–4331 (2013)

    CAS  Google Scholar 

  36. K.S. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl. Chem. 57, 603–619 (1985)

    CAS  Google Scholar 

  37. F. Kleitz, L.A. Solovyov, G.M. Anilkumar, S.H. Choi, R. Ryoo, Transformation of highly ordered large pore silica mesophases (Fm 3 m, Im 3 m and p 6 mm) in a ternary triblock copolymer–butanol–water system. Chem. Commun. (2004). https://doi.org/10.1039/B403903C

    Article  Google Scholar 

  38. W. Affo et al., Cobalt-catalyzed trimethylsilylmethylmagnesium-promoted radical alkenylation of alkyl halides: a complement to the Heck reaction. J. Am. Chem. Soc. 128, 8068–8077 (2006)

    CAS  PubMed  Google Scholar 

  39. S. Maity, P. Dolui, R. Kancherla, D. Maiti, Introducing unactivated acyclic internal aliphatic olefins into a cobalt catalyzed allylic selective dehydrogenative Heck reaction. Chem. Sci. 8, 5181–5185 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. M.E. Weiss, L.M. Kreis, A. Lauber, E.M. Carreira, Cobalt-catalyzed coupling of alkyl iodides with alkenes: deprotonation of hydridocobalt enables turnover. Angew. Chem. Int. Ed. 50, 11125–11128 (2011)

    CAS  Google Scholar 

  41. G.P. Cerai, B. Morandi, Atom-economical cobalt-catalysed regioselective coupling of epoxides and aziridines with alkenes. Chem. Commun. 52, 9769–9772 (2016)

    Google Scholar 

  42. K.M. Nicholas, Chemistry and synthetic utility of cobalt-complexed propargyl cations. Acc. Chem. Res. 20, 207–214 (1987)

    CAS  Google Scholar 

  43. R.K. Sharma et al., Maghemite-copper nanocomposites: applications for ligand-free cross-coupling (C− O, C− S, and C− N) reactions. ChemCatChem 7, 3495–3502 (2015)

    CAS  Google Scholar 

  44. K. Swapna, S.N. Murthy, M.T. Jyothi, Y.V.D. Nageswar, Recyclable heterogeneous copper oxide on alumina catalyzed coupling of phenols and alcohols with aryl halides under ligand-free conditions. Org. Biomol. Chem. 9, 5978–5988 (2011)

    CAS  PubMed  Google Scholar 

  45. R. Ghorbani-Vaghei, S. Hemmati, H. Veisi, An in situ generated CuI/metformin complex as a novel and efficient catalyst for C-N and C–O cross-coupling reactions. Tetrahedron Lett. 54, 7095–7099 (2013)

    CAS  Google Scholar 

  46. A. Dhakshinamoorthy, A.M. Asiri, H. Garcia, Metal–organic frameworks catalyzed C-C and C–heteroatom coupling reactions. Chem. Soc. Rev. 44, 1922–1947 (2015)

    CAS  PubMed  Google Scholar 

  47. A. Majumder, R. Gupta, M. Mandal, M. Babu, D. Chakraborty, Air-stable palladium (0) phosphine sulfide catalysts for Ullmann-type C-N and C–O coupling reactions. J. Organomet. Chem. 781, 23–34 (2015)

    CAS  Google Scholar 

  48. M. Hosseini-Sarvari, Z. Razmi, Highly active recyclable heterogeneous Pd/ZnO nanoparticle catalyst: Sustainable developments for the C-O and C–N bond cross-coupling reactions of aryl halides under ligand-free conditions. RSC Adv. 4, 44105–44116 (2014)

    CAS  Google Scholar 

  49. P. Zhang et al., Mesoporous nitrogen-doped carbon for copper-mediated Ullmann-type C-O/–N/–S cross-coupling reactions. RSC Adv. 3, 1890–1895 (2013)

    CAS  Google Scholar 

  50. R. Hayes, C. Allen, Journal of inorganic and organometallic polymers and materials 20: polymerization of cyclophosphazenes with spriocyclic methacrylate containing substituents. Cell. Polym. 30, 344–345 (2011)

    Google Scholar 

Download references

Funding

The author is grateful for the partial support of this study by Qeshm Branch, Islamic Azad University.

Author information

Authors and Affiliations

Authors

Contributions

Iman khosravi co-wrote the manuscript.

Corresponding author

Correspondence to Melika Eftekhar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1778 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eftekhar, M., Khosravi, I. CoII immobilized on aminated mesoporous SBA-16 (SBA-16/GPTMS-NH2–CoII): a highly efficient mesostructured catalyst for the C–O bond formation under solvent-free conditions. J Porous Mater 30, 1255–1272 (2023). https://doi.org/10.1007/s10934-022-01414-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01414-y

Keywords

Navigation