Skip to main content
Log in

Highly selective aromatization of light naphtha using mesoporous aluminosilicate catalysts and theoretical model for predicting activity

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In this work, various non-zeolitic catalysts were studied for the conversion of light naphtha into aromatics using a down-flow fixed bed reactor in a continuous mode operation. The physicochemical properties of the catalysts were determined using powder X-ray diffractometer, Nsorption, atomic absorption spectroscopy, high-resolution transmission electron microscopy, NH3-temperature programmed desorption and thermogravimetric analysis techniques. Among the several non-zeolitic catalysts such as Al-SBA-15, mesoporous silica-alumina, SAPO-34, and calcined K-10 montmorillonite clay, Al-SBA-15 exhibited high light naphtha conversion of about 45% with 55% selectivity for aromatics. The rest of the catalysts though gave lower conversion, showed higher selectivity of > 90% for aromatics with a very low formation of cracking side products. The catalytic performance of non-zeolitic catalysts was compared with that of HZSM-5. The synergistic effect of physicochemical parameters such as acidity, pore volume, and pore diameter on the aromatic yield was theoretically deduced by constructing a non-linear model using the combination of the catalyst properties. To explore nature and to understand the responsible active sites involved in the mechanism for the light naphtha transformation to aromatics, the model compounds such as n-pentane, n-hexane, and cyclohexane were tested over mesoporous silica-alumina catalyst. The reaction parameters, viz. temperature, ratio of carrier gas to hydrocarbon, and weight hourly space velocity were optimized for obtaining a high aromatic yield. The 24 h time on stream study showed that the catalyst is resistant to coking and was able to retain its activity and selectivity for aromatics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Antos, G.J., Aitani, A.M., Parera, J.M.: Marcel Dekker Inc (1995)

  2. J.L. Hodala, A.B. Halgeri, G.V. Shanbhag, R.S. Reddy, N.V. Choudary, P.V. Rao, M.G. SriGanesh, G. Shah, R. Ravishankar, ChemistrySelect 1, 2515–2521 (2016)

    CAS  Google Scholar 

  3. N. Viswanadham, J. Gupta, G.M. Dhar, M. Garg, Energy Fuels. 20, 1806–1814 (2006)

    CAS  Google Scholar 

  4. M. Guisnet, N. Gnep, D. Aittaleb, Y. Doyemet, Appl. Catal. A: Gen. 87, 255–270 (1992)

    CAS  Google Scholar 

  5. M. Scurrell, Appl. Catal. 41, 89–98 (1988)

    CAS  Google Scholar 

  6. N. Viswanadham, A. Pradhan, N. Ray, S. Vishnoi, U. Shanker, T.P. Rao, Appl. Catal. A: Gen. 137, 225–233 (1996)

    CAS  Google Scholar 

  7. M. Guisnet, P. Magnoux, Appl. Catal. 54, 1–27 (1989)

    CAS  Google Scholar 

  8. L. Li, X. Mu, W. Liu, X. Kong, S. Fan, Z. Mi, C.J. Li, Angew. Chem. Int. 126, 14330–14333 (2014)

    Google Scholar 

  9. E.A. Uslamin, H. Saito, Y. Sekine, E.J. Hensen, N. Kosinov, Catal. Today. 369, 184–192 (2021)

    CAS  Google Scholar 

  10. L.M. Lubango, M.S. Scurrell, Appl. Catal. A: Gen. 235, 265–272 (2002)

    CAS  Google Scholar 

  11. K. Sharifi, R. Halladj, S.J. Royaee, Rev. Adv. Mater. Sci. 59, 188–206 (2020)

    CAS  Google Scholar 

  12. P.T. Huyen, V.D. Trinh, M.T. Portilla, C. Martínez, Catal. Today. 366, 97–102 (2021)

    CAS  Google Scholar 

  13. A. Corma, Catal. Lett. 22, 33–52 (1993)

    CAS  Google Scholar 

  14. J.M. Thomas, Handbook of heterogeneous catalysis. 2., completely revised and enlarged Edition, vol. 1–8. Edited by G. Ertl, H. Knözinger, F. Schüth, and J. Weitkamp. Wiley Online Library (2009)

  15. N.Y. Chen, T.Y. Yan, Ind. Eng. Chem. Process. Des. Dev. 25, 151–155 (1986)

    CAS  Google Scholar 

  16. Y. Ono, Catal Rev. 34, 179–226 (1992)

    CAS  Google Scholar 

  17. P. Mériaudeau, C. Naccache, Catal Rev. 39, 5–48 (1997)

    Google Scholar 

  18. N. Viswanadham, S. Saxena, M. Kumar, Pet Sci Technol. 29, 393–400 (2011)

    CAS  Google Scholar 

  19. A. Ishihara, Y. Kodama, T. Hashimoto, Fuel Process. Technol. 213, 106679 (2021)

    CAS  Google Scholar 

  20. W. Wannapakdee, D. Suttipat, P. Dugkhuntod, T. Yutthalekha, A. Thivasasith, P. Kidkhunthod, S. Nokbin, S. Pengpanich, J. Limtrakul, C. Wattanakit, Fuel 236, 1243–1253 (2019)

    CAS  Google Scholar 

  21. N. Rahimi, R. Karimzadeh, Appl. Catal. A: Gen. 398, 1–17 (2011)

    CAS  Google Scholar 

  22. Ravishankar, R., Rao, P.V.C., Choudary, N.V., Shanbhag, G.V., Janardhan, H.L., Halgeri, A.B., Gandham, S.: US Patents (2019)

  23. A. Maity, S. Chaudhari, J.J. Titman, V. Polshettiwar, Nat. Commun. 11, 1–12 (2020)

    Google Scholar 

  24. N. Viswanadham, R. Kamble, S.K. Saxena, M. Singh, Catal. Commun. 9, 1894–1897 (2008)

    CAS  Google Scholar 

  25. K. Lee, S. Lee, Y. Jun, M. Choi, J. Catal. 347, 222–230 (2017)

    CAS  Google Scholar 

  26. P. Tamizhdurai, A. Ramesh, P.S. Krishnan, S. Narayanan, K. Shanthi, S. Sivasanker, Micropor. Mesopor. Mater. 287, 192–202 (2019)

    CAS  Google Scholar 

  27. A. Martins, J.M. Silva, J. Blanchard, P. Massiani, M. Breysse, F.R. Ribeiro, M.F. Ribeiro, React. Kinet. Catal. Lett. 82, 139–147 (2004)

    CAS  Google Scholar 

  28. J. Du, H. Xu, J. Shen, J. Huang, W. Shen, D. Zhao, Appl. Catal. A: Gen. 296, 186–193 (2005)

    CAS  Google Scholar 

  29. J. Yu, R. Wang, S. Ren, X. Sun, C. Chen, Q. Ge, W. Fang, J. Zhang, H. Xu, D.S. Su, ChemCatChem 4, 1376–1381 (2012)

    CAS  Google Scholar 

  30. N. Kulal, R. Vetrivel, C.S. Gopinath, R.K. Ravindran, V.N. Rao, M. Shetty, R. Shrikanth, D. Rangappa, G.V. Shanbhag, Chem. Eng. J. 419, 129439 (2021)

    CAS  Google Scholar 

  31. N.A.A. Talib, F. Salam, N.A. Yusof, S.A.A. Ahmad, Y. Sulaiman, RSC Adv. 7, 11101–11110 (2017)

    CAS  Google Scholar 

  32. N.A. Alba, Z.J. Du, K.A. Catt, T.D. Kozai, X.T. Cui, Biosensors 5, 618–646 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. U. Lange, N.V. Roznyatovskaya, V.M. Mirsky, Anal. Chim. Acta. 614, 1–26 (2008)

    CAS  PubMed  Google Scholar 

  34. M. Cui, Z. Song, Y. Wu, B. Guo, X. Fan, X. Luo, Biosens. Bioelectron. 79, 736–741 (2016)

    CAS  PubMed  Google Scholar 

  35. G.V. Shanbhag, S. Kumbar, S. Halligudi, J Mol Catal A Chem. 284, 16–23 (2008)

    CAS  Google Scholar 

  36. G. Crépeau, V. Montouillout, A. Vimont, L. Mariey, T. Cseri, F. Maugé, J. Phys. Chem. B. 110, 15172–15185 (2006)

    PubMed  Google Scholar 

  37. A. Prakash, S. Unnikrishnan, J. Chem. Soc. Faraday Trans. 90, 2291–2296 (1994)

    CAS  Google Scholar 

  38. S. Wolfram, The MATHEMATICA ® Book, Version 3 (Cambridge University Press, 1996)

    Google Scholar 

  39. S.P. Viswanathan, B.N. Narayanan, Z. Yaakob, S. Padikkaparambil, M. Mohammad, React. Kinet. Mech. Catal. 111, 335–345 (2014)

    CAS  Google Scholar 

  40. A. Vinu, V. Murugesan, W. Böhlmann, M. Hartmann, J. Phys. Chem. B. 108, 11496–11505 (2004)

    CAS  Google Scholar 

  41. W. Shujie, J. Huang, W. Tonghao, S. Ke, W. Hongsu, X. Lihong, X. Haiyan, X. Ling, G. Jingqi, K. Qiubin, Chinese. J. Catal. 27, 9–14 (2006)

    Google Scholar 

  42. C. Hu, H. Zhang, S. Wu, R. Xiao, Energy Convers. Manag. 210, 112678 (2020)

    CAS  Google Scholar 

  43. T. Fukunaga, H. Katsuno, Catal. Surv. Asia. 14, 96–102 (2010)

    CAS  Google Scholar 

  44. T. Hughes, W. Buss, P. Tamm, R. Jacobson, Stud Surf Sci Catal (1986). https://doi.org/10.1016/S0167-2991(09)60940-X

    Article  Google Scholar 

  45. J. Jarvis, P. He, A. Wang, H. Song, Fuel 236, 1301–1310 (2019)

    CAS  Google Scholar 

  46. Y. Jiang, J. Huang, W. Dai, M. Hunger, Solid State Nucl. Magn. Reson. 39, 116–141 (2011)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the funding from Hindustan Petroleum Corporation Ltd. (HPCL), India and thank HPCL management for all the support for this research work. GVS acknowledges Admar Mutt Education Foundation (AMEF), Bengaluru for providing facilities to carry out this research and Vision Group on Science and Technology (VGST), Govt. of Karnataka for the analytical facility for BET surface area analysis.

Funding

This study was supported by the Hindustan Petroleum Green Research and Development Centre (HPGRDC) and the Hindustan Petroleum Corporation Ltd. (HPCL), India.

Author information

Authors and Affiliations

Authors

Contributions

SS and BJV: Conducting experiments, methodology, data acquisition, validation, formal analysis, and writing the original draft. GK: Synthesis of a few catalysts and reactions. RRK and SS: Development of theoretical modeling. RSR, SPM, and CB: Catalyst characterization and review of the work. GV and RR: Project administration, resources, scientific inputs and review of the work. GVS: Conceptual idea, fund acquisition, project administration, supervision, and manuscript correction.

Corresponding author

Correspondence to Ganapati V. Shanbhag.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2527 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sujith, S., Vaishnavi, B.J., Kamath, G. et al. Highly selective aromatization of light naphtha using mesoporous aluminosilicate catalysts and theoretical model for predicting activity. J Porous Mater 30, 1069–1083 (2023). https://doi.org/10.1007/s10934-022-01404-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01404-0

Keywords

Navigation