Skip to main content
Log in

Improved aromatic yield and toluene selectivity in propane aromatization over Zn–Co/ZSM-5: effect of metal composition and process conditions

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In this report, a catalytic enhanced-conventional process production background was employed to determine the most cost-effective and environmentally friendly techniques to improve the catalytic production of toluene and other aromatic compounds from propane aromatization. 2 wt% of zinc was co-impregnated with 1–3 wt% of cobalt on HZSM-5. Characterizations and analysis showed that catalysts are crystalline and microporous. Propane conversion was carried out at 540 °C, 1200 ml/g-h gas hourly space velocity and atmospheric pressure over Zn–Co/ZSM-5 bimetallic catalysts. Toluene selectivity in the aromatic products was greatly improved and sustained significantly together with other aromatic products. Catalytic conversion of propane and aromatic yield over Zn–Co/ZSM-5 was improved and stabilized due to metallic collaboration on HZSM-5. Aromatic yield averaged 46, 32, and 36%, respectively, for 1–3 wt% Co in Zn–Co/ZSM-5 bimetallic catalyst. Average toluene selectivity in the aromatic products for 12 h time on stream from 60, 50 and 51% for 1–3 wt% Co loading. The threshold loading of cobalt with zinc was 2% above which the general aromatic selectivity declined. A decrease in conversion from 73 to 15% was observed for flowrate increase from 6 to 35 ml min−1 and an increase in aromatic selectivity from 80 to 87%. An increase in temperature of 500–560 °C increased catalytic performance, 32–47% for propane conversion, and 79–86% aromatic selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and are provided in the supplementary information files.

Abbreviations

BET:

Brunauer–Emmett–Teller

BTEX:

Benzene toluene ethylbenzene xylene

FTIR:

Fourier transform infra-red

H2-TPR:

Hydrogen-temperature programming reduction

SEM:

Scanning slmctron microscopy

TEM:

Transmission electron microscopy

XPS:

X-ray photoelectron spectroscopy

XRD:

X-ray diffraction

XRF:

X-ray fluorescence

References

  1. B. Liu, S. Lu, E. Liu, X. Hu, J. Fan, Korean J. Chem. Eng. 35(4), 867–874 (2018)

    Article  CAS  Google Scholar 

  2. B.S. Kwak, W.M. Sachtler, Korean J. Chem. Eng. 13(4), 356–363 (1996)

    Article  CAS  Google Scholar 

  3. Y.K. Park, D.H. Kim, S.I. Woo, Korean J. Chem. Eng. 14(4), 249–256

  4. X. Chen, M. Dong, X. Niu. K. Wang, G. Chen, W. Fan, Z. Qin, Chin. J. Catal. 36(6), 880–888 (2015)

    Article  Google Scholar 

  5. J. Park, W.Y. Lee, H.S. Hahm, Korean J. Chem. Eng. 19(3), 411–416 (2002)

    Article  CAS  Google Scholar 

  6. T. Yang, L. Cheng, N. Li, D. Liu, Ind. Eng. Chem. Res. 56(41), 11763–11772 (2017)

    Article  CAS  Google Scholar 

  7. D. Bhattacharya, S. Sivasanker, J. Catal. 153(2), 353–355 (1995)

    Article  CAS  Google Scholar 

  8. Y. Xu, L. Liwu, Appl. Catal. A 188(1–2), 53–67 (1999)

    Article  CAS  Google Scholar 

  9. I.D. Mall, Petrochemical Process Technology, 1st edn. (New Delhi, Macmillan India, 2007)

    Google Scholar 

  10. K. Frey, L.M. Lubango, M.S. Scurrell, L. Guczi, Reaction Kinetics, Mechanisms and Catalysis 104(2), 303–309 (2011)

    Article  CAS  Google Scholar 

  11. C. Song, K. Liu, D. Zhang, S. Liu, X. Li, S. Xie, L. Xu, Appl. Catal. A 470, 15–23 (2014)

    Article  CAS  Google Scholar 

  12. M. Miyamoto, K. Mabuchi, J. Kamada, Y. Hirota, Y. Oumi, N. Nishiyama, S. Uemiya, J. Porous Mater. 22(3), 769–778 (2015)

    Article  CAS  Google Scholar 

  13. M.S. Pereira, M.S. Alexander, A. Marco, N. Chaer, J. Phys. Chem. C 115(20), 10104–10113 (2011)

    Article  CAS  Google Scholar 

  14. S.M. Csicsery, Shape-selective Catalyst in Zeolite. Zeolite, Vol. 4, Issue 3, 202–213. 1984

  15. H. Jiang, M.S. Tzou, W.M.H. Sachtler, Appl. Catal. 39, 255–265 (1988)

    Article  CAS  Google Scholar 

  16. M. Guisnet, N.S. Gnep, D. Aittaleb, Y.J. Doyemet, Appl. Catal. A 87(2), 255–270 (1992)

    Article  CAS  Google Scholar 

  17. N. Viswanadham, G. Muralidhar, T.S.R.P. Rao, J. Mol. Catal. A 223, 269–274 (2004)

    Article  CAS  Google Scholar 

  18. S. Phatanasri, P. Praserthdam, A. Sripusitto, Korean J. Chem. Eng. 17(4), 409–413 (2000)

    Article  CAS  Google Scholar 

  19. B. Xu, M. Tan, X. Wu, H. Geng, S. Zhao, J. Yao, et al., Propane aromatization tuned by tailoring Cr Modified Ga/ZSM-5 catalysts. ChemCatChem 13(16), 3601–3610 (2021)

    Article  CAS  Google Scholar 

  20. H. Fan, X. Nie, C. Song, X. Guo, Mechanistic Insight into the Promotional Effect of CO2 on Propane Aromatization over Zn/ZSM-5 (Industrial & Engineering Chemistry Research, 2022)

  21. T. Pan, S. Ge, M. Yu, Y. Ju, R. Zhang, P. Wu, … Z. Wu, Synthesis and consequence of Zn modified ZSM-5 zeolite supported Ni catalyst for catalytic aromatization of olefin/paraffin. Fuel 311, 122629 (2022)

    Article  CAS  Google Scholar 

  22. C.W. Chang, J.T. Miller, Catalytic process development strategies for conversion of propane to liquid hydrocarbons. Appl. Catal. A 643, 118753 (2022)

    Article  CAS  Google Scholar 

  23. S. Song, T. Li, Y. Ju, Y. Li, Z. Lv, P. Zheng, et al., Lanthanum/gallium-modified Zn/ZSM-5 zeolite for efficient isomerization/aromatization of FCC light gasoline. Ind. Eng. Chem. Res. 61(27), 9667–9677 (2022)

    Article  CAS  Google Scholar 

  24. S. Hajimirzaee, S. Mehr, A., & E. Kianfar (2020). Modified ZSM-5 zeolite for conversion of LPG to aromatics. Polycyclic Arom. Compd. 1–14

  25. I.B. Dauda, M. Yusuf, S. Gbadamasi, M. Bello, A.Y. Atta, B.O. Aderemi, B.Y. Jibril, ACS Omega (2020)

  26. G.G. Oseke, A.Y. Atta, M. Bello, J.B. Yakubu, B.O. Aderemi, Appl. Petrochem. Res. 10(2), 55–65 (2020)

    Article  Google Scholar 

  27. G.G. Oseke, A.Y. Atta, M. Bello, J.B. Yakubu, B.O. Aderemi. J. King Saud Univ. Eng. Sci. 33, 531–538 (2021)

  28. G.G. Oseke, A.Y. Atta, M. Bello, J.B. Yakubu, B.O. Aderemi, NSChE J. 35(1), 17 (2020)

    Google Scholar 

  29. G.G. Oseke, A.Y. Atta, M. Bello, J.B. Yakubu, B.O. Aderemi. J. Porous Mater. https://doi.org/10.1007/s10934-022-01294-2 (2022)

    Article  Google Scholar 

  30. J. Liu, G. Jiang, Y. Liu, J. Di, Y. Wang, Z. Zhao, J. Liu, Sci. Rep. 4, 7276 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. R. Sabarish, G. Unnikrishnan, SN Appl. Sci. 1(9), 989 (2019)

    Article  CAS  Google Scholar 

  32. B. Liu, S. Lu, E. Liu, X. Hu, Fan, J. Korean J. Chem. Eng. 35(4), 867–874 (2018)

    Article  CAS  Google Scholar 

  33. J. Park, W.Y. Lee, H.S. Hahm, Korean J. Chem. Eng. 19(3), 411–416 (2000)

    Article  Google Scholar 

  34. Y. Jia, J. Wang, K. Zhang, W. Feng, S. Liu, C. Ding, P. Liu, Microporous Mesoporous Mater. 247, 103–115 (2017)

    Article  CAS  Google Scholar 

  35. V. Ramasubramanian, D.J. Lienhard, H.G.L. Ramsurn, G.L. Price, Catal. Lett. 149(4), 950–964 (2019)

    Article  CAS  Google Scholar 

  36. W. Zhou, J. Liu, J. Wang, L. Lin, X. Zhang, N. He, H. Guo, Catal. Lett. 149(8), 2064–2077 (2019)

    Article  CAS  Google Scholar 

  37. Y. Xin, P. Qi, X. Duan, H. Lin, Y. Yuan, Catal. Lett. 143(8), 798–806 (2013)

    Article  CAS  Google Scholar 

  38. B.K. Van der, V.V. Galvita, G.B. Marin, Appl. Catal. A 492, 117–126 (2015)

    Article  Google Scholar 

  39. W. Wannapakdee, D. Suttipat, P. Dugkhuntod, T. Yutthalekha, A. Thivasasith, P. Kidkhunthod, C. Wattanakit, Fuel 236, 1243–1253 (2019)

    Article  CAS  Google Scholar 

  40. S.H. Zhang, Z.X. Gao, S.J. Qing, S.Y. Liu, Y. Qiao, Chem. Pap. 68(9), 1187–1193 (2014)

    Article  CAS  Google Scholar 

  41. X. Niu, J. Gao, Q. Miao, M. Dong, M.G. Wang, W. Fan, J. Wang, Microporous Mesoporous Mater. 197, 252–261 (2014)

    Article  CAS  Google Scholar 

  42. X. Wang, J. Zhang, T. Zhang, H. Xiao, F. Song, Y. Han, Y. Tan, RSC Adv. 6(28), 23428–23437 (2016)

    Article  CAS  Google Scholar 

  43. E. Mannei, F. Ayari, E. Asedegbega-Nieto, M. Mhamdi, G. Delahay, Z. Ksibi, A. Ghorbel, Chem. Pap. 73(3), 619–633 (2019)

    Article  Google Scholar 

  44. A.K. Mageed, A.D. Radiah, A. Salmiaton, S. Izhar, M.A. Razak, J. King Saud Univ. Sci. 31(4), 878–885 (2019)

    Article  Google Scholar 

  45. W.W. Fang, M.M. Mu, J. Tian, L.G. Chen, Y. Li, Chem. Pap. 70(4), 430–435 (2016)

    Article  CAS  Google Scholar 

  46. T.K.T. Dao, C.L. Luu, Nanosci. Nanatechnol. 6(3), 035014 (2015)

    Google Scholar 

  47. Y.C. Yang, H.S. Weng, J. Mol. Catal. A 304(1–2), 65–70 (2009)

    Article  CAS  Google Scholar 

  48. J. Jarvis, P. He, A. Wang, H. Song, Fuel 236, 1301–1310 (2019)

    Article  CAS  Google Scholar 

  49. J. Jarvis, A. Wong, P. He, Q. Li, H. Song, Fuel 223, 211–221 (2018)

    Article  CAS  Google Scholar 

  50. M. Roy, G. Sourav, K.N. Milan, Mater. Chem. Phys. 159, 101–106 (2015)

    Article  CAS  Google Scholar 

  51. S.H. Zhang, Z.X. Gao, S.J. Qing, S.Y. Liu, Y. Qiao, Chem. Pap. 68(9), 1187–1193

  52. M.S. Scurrell, Appl. Catal. 41, 89–98 (1988)

    Article  CAS  Google Scholar 

  53. T.E. Tshabalala, M.S. Scurrell, Catal Commun. 72, 49–52 (2015)

    Article  CAS  Google Scholar 

  54. Y. Xu, S. Yoshizo, Z. Zhan-Guo, Appl. Catal. A 452, 105 (2013)

    Article  CAS  Google Scholar 

  55. X. Zhu, H. Wang, G. Wang, Y. Hou, J. Zhang, C. Li, C. Yang, J. Porous Mater. 28(4), 1059–1067 (2021)

    Article  CAS  Google Scholar 

  56. E.E. Peter, A.Y. Atta, B. Mukhtar, B.O. Aderemi, B.J. El-Yakub, J. King Saud Univ. Eng. Sci. 33(7), 447–458 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

A deep appreciation from the authors goes to the Petroleum Technology Development Fund (PTDF), Abuja, Nigeria for providing support and funding for this research.

Funding

This research was funded by Petroleum Technology Development Fund, PTDF, Ministry of Petroleum Resources, Abuja-Nigeria.

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in the manuscript proofreading but below are the unique contributions of an individual with the corresponding author, Dr. Oseke Godwin Gbenga carried out the research in the laboratory and prepared the manuscript. Professor AAY was deeply involved in catalyst synthesis and effective operations of the fixed bed reactor. Professor MB and Professor EYBJ contributed to catalyst performance tests in relation to characterization. Professor ABO contributed to catalyst characterization, understanding the reaction mechanism in relation to performance tests, and general organization of the research. EEP contributed to understanding the reaction mechanism, temperature effect on product distribution, and metal catalyst interactions.

Corresponding author

Correspondence to G. G. Oseke.

Ethics declarations

Conflict of interest

The authors of this paper declare that we have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oseke, G.G., Peter, E.E., Atta, A.Y. et al. Improved aromatic yield and toluene selectivity in propane aromatization over Zn–Co/ZSM-5: effect of metal composition and process conditions. J Porous Mater 30, 999–1010 (2023). https://doi.org/10.1007/s10934-022-01397-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01397-w

Keywords

Navigation