Skip to main content
Log in

The way to enhance SAPO-34 activity and stability in methanol-to-olefin conversion

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The study on influence of initial SiO2/Al2O3 ratio and approaches to precursor mixing (conventional mixing with magnetic stirrer and overhead mixing with ultrasonication (US)) on phase, texture and acidity of SAPO-34 and catalytic performance in methanol-to-olefin (MTO) process is presented. Contribution of the amorphous phase in the catalysts were determined using neural network via counting cubic (crystalline) and spherical (amorphous) particles in SEM images. We have found out that ultrasonication pre-treatment improves the crystallinity of SAPO-34 crystals and facilitates silicon incorporation into AlPO framework at higher SiO2/Al2O3 ratio. Acidity of samples synthesized with US pre-treatment is increased comparing with corresponding samples synthesized without US pre-treatment. US-treated catalyst lifetime is also enhanced. As a result, total olefin yield is higher on US-treated catalysts comparing with corresponding SiO2/Al2O3 ratio of non-treated ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Yang, D. Fan, Y. Wei, P. Tian, Z. Liu, Catal. Adv. Mater. (2019). https://doi.org/10.1002/adma.201902181

    Article  Google Scholar 

  2. M. Stöcker, Microporous Mesoporous Mater. (1999). https://doi.org/10.1016/S1387-1811(98)00319-9

    Article  Google Scholar 

  3. M. Boronat, A. Corma, Catal. Lett. (2015). https://doi.org/10.1007/s10562-014-1438-7

    Article  Google Scholar 

  4. N.J. Tapp, N.B. Milestone, D.M. Bibby, Stud. Surf. Sci. Catal. (1988). https://doi.org/10.1016/S0167-2991(09)60616-9

    Article  Google Scholar 

  5. G. Sastre, D.W. Lewis, C.R.A. Catlow, J. Mol. Catal. A (1997). https://doi.org/10.1016/S1381-1169(96)00498-0

    Article  Google Scholar 

  6. S. Wilson, P. Barger, Microporous Mesoporous Mater. (1999). https://doi.org/10.1016/S1387-1811(98)00325-4

    Article  Google Scholar 

  7. A. Xing, D. Yuan, D. Tian, Q. Sun, Microporous Mesoporous Mater. (2019). https://doi.org/10.1016/J.MICROMESO.2019.109562

    Article  Google Scholar 

  8. M. Ghavipour, A.S. Mehr, Y. Wang, R.M. Behbahani, S. Hajimirzaee, K. Bahrami, RSC Adv. (2016). https://doi.org/10.1039/C5RA23432H

    Article  Google Scholar 

  9. A. Izadbakhsh, F. Farhadi, F. Khorasheh, S. Sahebdelfar, M. Asadi, Y.Z. Feng, Appl. Catal. A (2009). https://doi.org/10.1016/J.APCATA.2009.05.022

    Article  Google Scholar 

  10. S.F. Alam, M. Kim, A. Rehman, D. Arepalli, P. Sharma, Nanomaterials (2021). https://doi.org/10.3390/nano11123198

    Article  PubMed  PubMed Central  Google Scholar 

  11. K. Rahimi, J. Towfighi, M. Sedighi, S. Masoumi, Z. Kooshki, J. Ind. Eng. Chem. (2016). https://doi.org/10.1016/J.JIEC.2015.12.015

    Article  Google Scholar 

  12. X. Xiao, Z. Xu, P. Wang, X. Liu, X. Fan, L. Kong, Z. Xie, Z. Zhao, Catalysts (2021). https://doi.org/10.3390/catal11070835

    Article  Google Scholar 

  13. L. Xu, A. Du, Y. Wei, Y. Wang, Z. Yu, Y. He, X. Zhang, Z. Liu, Microporous Mesoporous Mater. (2008). https://doi.org/10.1016/j.micromeso.2008.02.001

    Article  Google Scholar 

  14. W.L. dos Anjos, S.A.V. Morales, N.M.B. Oliveira, G.P. Valença, J. Sol-Gel Sci. Technol. (2021). https://doi.org/10.1007/s10971-021-05669-w

    Article  Google Scholar 

  15. M.F. Liz, A. V. Nartova, A. V. Matveev, A.G. Okunev, in Proc.—2020 Sci. Artif. Intell. Conf. S.A.I.Ence 2020. (2020). https://doi.org/10.1109/S.A.I.ence50533.2020.9303184

  16. A.G. Okunev, M. Yu Mashukov, N.N. Sankova, A.V. Nartova, A.V. Matveev, I.O.P. Conf, Ser. Mater. Sci. Eng. (2021). https://doi.org/10.1088/1757-899x/1155/1/012015

    Article  Google Scholar 

  17. A.V. Matveev, M.Y. Mashukov, A.V. Nartova, N.N. Sankova, A.G. Okunev, Phys. Chem. Aspects Stud. Clust. Nanostruct. Nanomater. 13, 300–311 (2021). https://doi.org/10.26456/pcascnn/2021.13.300

    Article  Google Scholar 

  18. K. Wada, Labelme: Image Polygonal Annotation with Python (2016), https://github.com/wkentaro/labelme. Accessed 9 July 2021

  19. S. Askari, R. Halladj, J. Solid State Chem. (2013). https://doi.org/10.1016/j.jssc.2013.02.026

    Article  Google Scholar 

  20. M. Charghand, M. Haghighi, S. Saedy, S. Aghamohammadi, Adv. Powder Technol. (2014). https://doi.org/10.1016/J.APT.2014.06.022

    Article  Google Scholar 

  21. S. Masoumi, J. Towfighi, A. Mohamadalizadeh, Z. Kooshki, K. Rahimi, Appl. Catal. A (2015). https://doi.org/10.1016/J.APCATA.2014.12.033

    Article  Google Scholar 

  22. T. Álvaro-Muñoz, C. Márquez-Álvarez, E. Sastre, Catal. Today. (2012). https://doi.org/10.1016/J.CATTOD.2011.07.038

    Article  Google Scholar 

  23. I.A. Shamanaeva, Z. Yu, A.V. Utemov, W. Wu, D.A. Sladkovskiy, E.V. Parkhomchuk, Pet. Chem. (2020). https://doi.org/10.1134/s0965544120040167

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Alekseeva N.A. (XRD patterns), Rudina N.A. (SEM images obtaining), Lysikov A.I. (TPD-NH3 measurement) and Leonova A.A. (texture measurements).

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the governmental order for Boreskov Institute of Catalysis (Project AAAA-A21-121011490008-3).

Author information

Authors and Affiliations

Authors

Contributions

IAS: Conceptualization, Methodology, Investigation, Writing—original draft. ZY: Conceptualization, Investigation. DAG: Investigation. DAS: Review and editing, Supervision. KAB: Methodology, Review and editing. EVP: Conceptualization, Review and editing, Supervision, Project administration.

Corresponding author

Correspondence to Irina A. Shamanaeva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 601 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamanaeva, I.A., Yu, Z., Golodnova, D.A. et al. The way to enhance SAPO-34 activity and stability in methanol-to-olefin conversion. J Porous Mater 30, 787–796 (2023). https://doi.org/10.1007/s10934-022-01383-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01383-2

Keywords

Navigation