Skip to main content
Log in

Porous metallic structures by de-alloying microcrystalline melt-spun ternary Zn70(Sn,Bi)30

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A rapid solidification method (melt-spinning technique) was applied to produce a series of Zn70Sn30 − xBix (x = 5,15,30) ribbons with homogeneous microcrystalline structure. All alloys contained ternary eutectics in a different amount depending on their overall composition, as Zn70Sn15Bi15 was characterized with maximum quantity of the ternary eutectic colonies. The as-quenched alloys in the form of ribbons were subjected to selective electrochemical dissolution (de-alloying), which resulted in mechanically stable three-dimensional porous structures. It was found that both, the morphology and size of the pores and ligaments depend on the initial alloys’ composition and microstructure. The fine initial alloys microstructure (grain size < 200nm) produced by rapid solidification resulted in pores and ligaments in the nanometric range. The Bi-richest porous alloy revealed a morphology similar to that of human bones, while the porous alloys produced from Zn70Sn25Bi5 and Zn70Sn15Bi15 were characterized by a worm-like ligament structure. The results obtained pave the way for the formation of useful for practical applications porous structures (e.g., for ion batteries electrodes) by de-alloying microcrystalline eutectic alloys with a suitable phase composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z. Lixin Xie, J. Yang, H. Sun, X. Zhou, H. Chi, X. Chen, Andy, Y. Li, S. Yao, Chen, Bi2Se3/C nanocomposite as a new sodium-ion battery anode material. Nano-Micro Lett. 10, 50 (2018). https://doi.org/10.1007/s40820-018-0201-9

    Article  CAS  Google Scholar 

  2. L. C.Wang, F. Wang, F. Li, J. Cheng, Chen, Bulk bismuth as a high-capacity and ultralong cycle‐life anode for sodium‐ion batteries by coupling with glyme‐based electrolytes. Adv. Mater. 29(35), 1702212 (2017). https://doi.org/10.1002/adma.201702212

    Article  CAS  Google Scholar 

  3. J. Sottmann, M. Herrmann, P. Vajeeston, A. Ruud, C. Drathen, H. Emerich, H. Fjellvåg, Bismuth vanadate and molybdate: stable alloying anodes for sodium-ion batteries. Chem. Mater. 29(7), 2803–2810 (2017). https://doi.org/10.1021/acs.chemmater.6b04699

    Article  CAS  Google Scholar 

  4. D.H. Nam, K.S. Hong, S.J. Lim, T.H. Kim, H.S. Kwon, Electrochemical properties of electrodeposited Sn anodes for Na-ion batteries. J. Phys. Chem. C 118(35), 20086–20093 (2014). https://doi.org/10.1021/jp504055j

    Article  CAS  Google Scholar 

  5. H. Algul, M. Uysal, M. Tokur, S. Ozcan, T. Cetinkaya, H. Akbulut, A. Alp, Three-dimensional Sn rich Cu6Sn5 negative electrodes for Li ion batteries. Int. J. Hydrogen Energy 41(23), 9819–9827 (2016). https://doi.org/10.1016/j.ijhydene.2016.03.097

    Article  CAS  Google Scholar 

  6. X. Dong, W. Liu, X. Chen, J. Yan, N. Li, S. Shi, X. Yang, Novel three dimensional hierarchical porous Sn-Ni alloys as anode for lithium ion batteries with long cycle life by pulse electrodeposition. Chem. Eng. Journal. 350, 791–798 (2018). https://doi.org/10.1016/j.cej.2018.06.031

    Article  CAS  Google Scholar 

  7. Z. Zhang, C. Zhou, L. Huang, X. Wang, Y. Qu, Y. Lai, J. Li, Synthesis of bismuth sulfide/reduced graphene oxide composites and their electrochemical properties for lithium ion batteries. Electrochim. Acta 114, 88–94 (2013). https://doi.org/10.1016/j.electacta.2013.09.174

    Article  CAS  Google Scholar 

  8. J. Zhang, Z. Ma, W. Jiang, Y. Zou, Y. Wang, C. Lu, Sandwich-like CNTs@ SnO2/SnO/Sn anodes on three-dimensional Ni foam substrate for lithium ion batteries. J. Electroanal. Chem. 767, 49–55 (2016). https://doi.org/10.1016/j.jelechem.2016.01.043

    Article  CAS  Google Scholar 

  9. J. Sun, M. Li, J.A.S. Oh, K. Zeng, L. Lu, Recent advances of bismuth based anode materials for sodium-ion batteries. Mater. Technol. 33(8), 563–573 (2018). https://doi.org/10.1080/10667857.2018.1474005

    Article  CAS  Google Scholar 

  10. F. Xin, M.S. Whittingham, Challenges and development of tin-based anode with high volumetric capacity for Li-ion batteries. Electrochem. Energ. Rev. 3, 643–655 (2020). https://doi.org/10.1007/s41918-020-00082-3

    Article  CAS  Google Scholar 

  11. D. Su, S. Dou, G. Wang, Bismuth: a new anode for the Na-ion battery. Nano Energy 12, 88–95 (2015). https://doi.org/10.1016/j.nanoen.2014.12.012

    Article  CAS  Google Scholar 

  12. Z. Yi, Z. Wang, Y. Cheng, L. Wang, Sn-based intermetallic compounds for Li‐ion batteries: structures, lithiation mechanism, and electrochemical performances. Energy & Environmental Materials 1(3), 132–147 (2018). https://doi.org/10.1002/eem2.12016

    Article  CAS  Google Scholar 

  13. S.Y. Han, J.A. Lewis, P.P. Shetty, J. Tippens, D. Yeh, T.S. Marchese, M.T. McDowell, Porous metals from chemical dealloying for solid-state battery anodes. Chem. Mater. 32(6), 2461–2469 (2020). https://doi.org/10.1021/acs.chemmater.9b04992

    Article  CAS  Google Scholar 

  14. D. Deng, Li-ion batteries: basics, progress, and challenges. Energy Sci. Eng. 3(5), 385–418 (2015). https://doi.org/10.1002/ese3.95

    Article  Google Scholar 

  15. A. Vu, Y. Qian, A. Stein, Porous electrode materials for lithium-ion batteries – how to prepare them and what makes them special. Adv. Energy Mater. 2, 1056–1085 (2012). https://doi.org/10.1002/aenm.201200320

    Article  CAS  Google Scholar 

  16. A. Huang, Y. He, Y. Zhou, Y. Zhou, Y. Yang, J. Zhang, J. Yang, A review of recent applications of porous metals and metal oxide in energy storage, sensing and catalysis. J. Mater. Sci. 54(2), 949–973 (2019). https://doi.org/10.1007/s10853-018-2961-5

    Article  CAS  Google Scholar 

  17. Z. Liu, X. Yuan, S. Zhang, J. Wang, Q. Huang, N. Yu, Y. Wu, Three-dimensional ordered porous electrode materials for electrochemical energy storage. NPG Asia Materials 11(1), 12 (2019). https://doi.org/10.1038/s41427-019-0112-3

    Article  CAS  Google Scholar 

  18. H. Gao, J. Niu, C. Zhang, Z. Peng, Z. Zhang, A dealloying synthetic strategy for nanoporous bismuth–antimony anodes for sodium ion batteries. ACS nano 12(4), 3568–3577 (2018). https://doi.org/10.1021/acsnano.8b00643

    Article  CAS  PubMed  Google Scholar 

  19. X. Liu, R. Zhang, W. Yu, Y. Yang, Z. Wang, C. Zhang, Y. Bando, D. Golberg, X. Wang, Y. Ding, Three-dimensional electrode with conductive Cu framework for stable and fast Li-ion storage. Energy Storage Materials 11, 83–90 (2018). https://doi.org/10.1016/j.ensm.2017.09.008

    Article  Google Scholar 

  20. C. Zhang, Z. Wang, Y. Cui, X. Niu, M. Chen, P. Liang, … X. He, Dealloying-derived nanoporous Cu6Sn5 alloy as stable anode materials for lithium-ion batteries. Materials 14(15), 4348 (2021). https://doi.org/10.3390/ma14154348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. X. Wu, W. Zhang, N. Wu, S.S. Pang, G. He, Y. Ding, Exploration of nanoporous CuBi binary alloy for potassium storage. Adv. Funct. Mater. 30(43), 2003838 (2020). https://doi.org/10.1002/adfm.202003838

    Article  CAS  Google Scholar 

  22. L.J. Xue, Y.F. Xu, L. Huang, F.S. Ke, Y. He, Y.X. Wang, S.G. Sun, Lithium storage performance and interfacial processes of three dimensional porous Sn–Co alloy electrodes for lithium-ion batteries. Electrochim. Acta 56(17), 5979–5987 (2011). https://doi.org/10.1016/j.electacta.2011.04.103

    Article  CAS  Google Scholar 

  23. H. Zhang, I. Hasa, S. Passerini, Beyond insertion for Na-Ion batteries: nanostructured alloying and conversion anode materials. Adv. Energy Mater. 8(17), 1702582 (2018). https://doi.org/10.1002/aenm.201702582

    Article  CAS  Google Scholar 

  24. H. Xie, W.P. Kalisvaart, B.C. Olsen, E.J. Luber, D. Mitlin, J.M. Buriak, Sn–Bi–Sb alloys as anode materials for sodium ion batteries. J. Mater. Chem. A 5(20), 9661–9670 (2017). https://doi.org/10.1039/C7TA01443K

    Article  CAS  Google Scholar 

  25. H.M. Zhang, X.M. Qin, H.Y. Sun, L.H. Liu, W. Li, Z.T. Lu, P.B. Han, Fabrication and electrochemical performance of Sn–Ni–Cu alloy films anode for lithium-ion batteries. J. Alloys Compd. 846, 156322 (2020). https://doi.org/10.1016/j.jallcom.2020.156322

    Article  CAS  Google Scholar 

  26. Y. Zhao, A. Manthiram, High-capacity, high-rate Bi–Sb alloy anodes for lithium-ion and sodium-ion batteries. Chem. Mater. 27(8), 3096–3101 (2015). https://doi.org/10.1021/acs.chemmater.5b00616

    Article  CAS  Google Scholar 

  27. M. Amsler, Z. Yao, C. Wolverton, Cubine, a quasi two-dimensional copper–bismuth nanosheet. Chem. Mater. 29(22), 9819–9828 (2017). https://doi.org/10.1021/acs.chemmater.7b03997

    Article  CAS  Google Scholar 

  28. E. Vassileva, L. Mihaylov, T. Boyadjieva, V. Koleva, R. Stoyanova, T. Spassov, Porous Sn obtained by selective electrochemical dissolution of melt-spun Zn70Sn30 alloys with lithium and sodium storage properties. J. Alloys Compd. 877, 160319 (2021). https://doi.org/10.1016/j.jallcom.2021.160319

    Article  CAS  Google Scholar 

  29. P.T. Vianco, J.A. Rejent, Properties of ternary Sn-Ag-Bi solder alloys: Part I—Thermal properties and microstructural analysis. J. Electron. Mater. 28(10), 1127–1137 (1999). https://doi.org/10.1007/s11664-999-0250-4

    Article  CAS  Google Scholar 

  30. K.J. Wieda, M.J. Schweiger, M. Bliss, S.G. Pitman, E.A. Eschbach, Materials Science and Technology Teachers Handbook (No. PNNL-17764). Pacific Northwest National Lab.(PNNL), Richland, WA (United States) (2008) https://doi.org/10.2172/937046

  31. D. Tan, T.L. Lee, J.C. Khong et al., High-speed synchrotron X-ray imaging studies of the ultrasound shockwave and enhanced flow during metal solidification processes. Metall. Mater. Trans. A 46, 2851–2861 (2015). https://doi.org/10.1007/s11661-015-2872-x

    Article  CAS  Google Scholar 

  32. D.V. Malakhov, X.J. Liu, I. Okhuma, K. Ishida, J. Phase Equilib. 21(6), 514–520 (2000)

    Article  CAS  Google Scholar 

  33. F. Ching-feng Yang, W. Chen, S. Gierlotka, Chen, Ker-chang Hsieh, Li-ling Huang, Thermodynamic properties and phase equilibria of Sn–Bi–Zn ternary alloys. Mater. Chem. Phys. 112(1), 94–103 (2008). https://doi.org/10.1016/j.matchemphys.2008.05.034

    Article  CAS  Google Scholar 

  34. H. Fengjiang Wang, Y. Chen, L. Huang, Z. Liu, Zhang, Recent progress on the development of Sn–Bi based low-temperature Pb-free solders. J. Mater. Sci. : Materials in Electronics 30, 3222–3243 (2019). https://doi.org/10.1007/s10854-019-00701-w

    Article  CAS  Google Scholar 

  35. F. Yang, L. Zhang, Z. Liu, S. Zhong, J. Ma, Li. Bao, Properties and microstructures of Sn-Bi-X lead-free solders. Adv. Mater. Sci. Eng. (2016). https://doi.org/10.1155/2016/9265195

    Article  Google Scholar 

  36. O.V. Gusakova, P.K. Galenko, V.G. Shepelevich, D.V. Alexandrov, M. Rettenmayr, Diffusionless (chemically partitionless) crystallization and subsequent decomposition of supersaturated solid solutions in Sn–Bi eutectic alloy. Phil Trans. R Soc. A 377, 20180204 (2018). https://doi.org/10.1098/rsta.2018.0204

    Article  CAS  Google Scholar 

  37. A. Delhaise, Solid-State Diffusion of Bismuth in Tin-Rich, Lead-Free Solder Alloys (Doctoral dissertation, University of Toronto (Canada)) (2018) https://hdl.handle.net/1807/91889

  38. A.M. Delhaise, Z. Chen, D.D. Perovic, Solid-state diffusion of Bi in Sn: effects of b-Sn grain orientation. J. Electron. Mater. 48, 32–43 (2019). https://doi.org/10.1007/s11664-018-6621-y

    Article  CAS  Google Scholar 

  39. T. Song, M. Yan, M. Qian, A dealloying approach to synthesizing micro-sized porous tin (Sn) from immiscible alloy systems for potential lithium-ion battery anode application. J. Porous Mater. 22(3), 713–719 (2015). https://doi.org/10.1007/s10934-015-9944-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Regional Development Fund within the Operational Programme “Science and Education for Smart Growth 2014–2020” under the Project CoE “National Center of Mechatronics and Clean Technologies” (BG05M2OP001-1.001-0008) and by the National Research Program “Low Carbon Energy for the Transport and Household (E+)” (DO1-214/28.11.2018). Part of the experiments were performed with equipment of the National Infrastructure INFRAMAT, granted by the Bulgarian Ministry of Education and Science.

Author information

Authors and Affiliations

Authors

Contributions

TS: conceptualization, methodology, investigation, writing—original draft, writing—review & editing. EV: investigation, sample preparation and characterization, data curation. LM: sample preparation and characterization, data curation. MS: investigation, characterization.

Corresponding author

Correspondence to T. Spassov.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vassileva, E., Mihaylov, L., Spassova, M. et al. Porous metallic structures by de-alloying microcrystalline melt-spun ternary Zn70(Sn,Bi)30. J Porous Mater 30, 485–492 (2023). https://doi.org/10.1007/s10934-022-01361-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01361-8

Keywords

Navigation