Skip to main content

Advertisement

Log in

Microstructure and properties of copper honeycombs prepared by powder extruding and sintering process

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Monolithic copper honeycombs were fabricated by a plasticizing powder extruding-sintering technology. The effect of sintering conditions on volume shrinkage, apparent density, microstructure, mechanical properties and heat conductivity of copper honeycombs were studied. With increasing sintering temperature and time, the metal particles form sintering necks and gradually coalesces into grains, and volume shrinkage, apparent density and strength increase, and the optimum sintering parameters are 950 °C for 2 h. When sintering temperature rises from 800 to 1000 °C, the volume shrinkage ranges from 15 to 30%, and the apparent density ranges from 1.49 to 1.74 g/cm3. When sintering time increases from 1 to 2.5 h, the volume shrinkage ranges from 18 to 27%, and the apparent density ranges from 1.52 to 1.70 g/cm3. Under axial compression, the yield strength ranges from 7.2 to 20.4 MPa. Under radial compression, the yield strength ranges from 2.1 to 3.5 MPa. The longitudinal and transverse effective thermal conductivity of monolithic copper honeycomb was calculated by parallel and series models, respectively. The maximum longitudinal effective thermal conductivity of copper honeycomb is 50.26 W/(m K) and the maximum transverse effective thermal conductivity is 0.033 W/(m K), which indicates that the longitudinal heat transfer of copper honeycomb is much better than transverse. It can be designed as heat sinks by using the performance of longitudinal thermal conductivity of copper honeycombs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Z. Wang, Recent advances in novel metallic honeycomb structure. Compos. B 166, 731–741 (2019). https://doi.org/10.1016/j.compositesb.2019.02.011

    Article  Google Scholar 

  2. Y. Zhou, X.Q. Zuo, J.H. Sun et al., Effects of sintering parameters on the structures of Fe–Cr–Al extruded honeycombs. Mat. Sci. Eng. A 457(1–2), 329–333 (2007). https://doi.org/10.1016/j.msea.2006.12.117

    Article  CAS  Google Scholar 

  3. S. Wang, W. Li, Y. Tao et al., Investigation on the temperature dependent out-of-plane quasi-static compressive behavior of metallic honeycombs. Thin Wall Struct. 149, 106625 (2020). https://doi.org/10.1016/j.tws.2020.106625

    Article  Google Scholar 

  4. R. Hussein, S. Anandan, M. Spratt et al., Effective elastic moduli of metal honeycombs manufactured using selective laser melting. Rapid Prototyp. J 26, 971–980 (2020). https://doi.org/10.1108/RPJ-12-2018-0311

    Article  Google Scholar 

  5. F. Zhang, R. Ji, Y. Liu et al., A novel nickel-based honeycomb electrode with microtapered holes and abundant multivacancies for highly efficient overall water splitting. Appl. Catal. B 276, 119141 (2020). https://doi.org/10.1016/j.apcatb.2020.119141

    Article  CAS  Google Scholar 

  6. X.C. Zhang, Y. Liu, B. Wang et al., Effects of defects on the in-plane dynamic crushing of metal honeycombs. Int. J. Mech. Sci. 52(10), 1290–1298 (2010). https://doi.org/10.1016/j.ijmecsci.2010.06.004

    Article  Google Scholar 

  7. B. Han, K. Qin, B. Yu et al., Honeycomb–corrugation hybrid as a novel sandwich core for significantly enhanced compressive performance. Mater. Des. 93, 271–282 (2016). https://doi.org/10.1016/j.matdes.2015.12.158

    Article  CAS  Google Scholar 

  8. T.N. Bitzer, Honeycomb Technology: Materials, Design, Manufacturing, Applications and Testing (Springer, Cham, 1997)

    Book  Google Scholar 

  9. Z. Li, T. Yang, Q. Jin et al., Compressive behaviours of lotus-type porous copper fabricated by Gasar process. Procedia Eng. 31, 337–342 (2012). https://doi.org/10.1016/j.proeng.2012.01.1033

    Article  CAS  Google Scholar 

  10. F. Agueniou, H. Vidal, J. de Dios López et al., 3D-printing of metallic honeycomb monoliths as a doorway to a new generation of catalytic devices: the Ni-based catalysts in methane dry reforming showcase. Catal. Commun. 148, 106181 (2021). https://doi.org/10.1016/j.catcom.2020.106181

    Article  CAS  Google Scholar 

  11. B.C. Church, T.H. Sanders, R.F. Speyer et al., Interconnect thermal expansion matching to solid oxide fuel cells. J. Mater. Sci. 40(18), 4893–4898 (2005). https://doi.org/10.1007/s10853-005-3887-2

    Article  CAS  Google Scholar 

  12. W.A. Cutler, L. He, A.R. Olszewski et al., Thermally conductive honeycombs for chemical reactors: U.S. Patent 6,881,703[P]. 2005-4-19

  13. E. Tronconi, G. Groppi, T. Boger et al., Monolithic catalysts with ‘high conductivity’ honeycomb supports for gas/solid exothermic reactions: characterization of the heat-transfer properties[J]. Chem. Eng. Sci. 59(22–23), 4941–4949 (2004). https://doi.org/10.1016/j.ces.2004.07.018

    Article  CAS  Google Scholar 

  14. J.L. Clark, J. Cochran, H. Thomas et al., in Metal Honeycomb from Oxide Paste: Maraging Steel and Super Invar Structure and Properties [C], ed. by A. Ghosh, T. Sanders, D. Claar. Processing and Properties of Lightweight Cellular Metals and Structures (TMS, Seattle, WA, 2002), pp. 137–146

    Google Scholar 

  15. L.C. Dial, T.H. Sanders, J.K. Cochran, The gas carburization of linear cellular alloys as a novel alloy development tool. Metall. Mater. Trans. A 43(4), 1303–1311 (2012). https://doi.org/10.1007/s11661-011-0973-8

    Article  CAS  Google Scholar 

  16. A. Jakus, A. Fredenburg, N. Thadhani, High-strain-rate behavior of maraging steel linear cellular alloys: mechanical deformations. Mater. Sci. Eng. A 534, 452–458 (2012). https://doi.org/10.1016/j.msea.2011.11.093

    Article  CAS  Google Scholar 

  17. L. Lu, Y. Shen, X. Chen et al., Ultrahigh strength and high electrical conductivity in copper. Science 304(5669), 422–426 (2004). https://doi.org/10.1126/science.1092905

    Article  CAS  PubMed  Google Scholar 

  18. T. Wen, J. Tian, T.J. Lu et al., Forced convection in metallic honeycomb structures. Int. J. Heat Mass Transf. 49(19–20), 3313–3324 (2006). https://doi.org/10.1016/j.ijheatmasstransfer.2006.03.024

    Article  Google Scholar 

  19. G. Groppi, E. Tronconi, Honeycomb supports with high thermal conductivity for gas/solid chemical processes. Catal. Today 105(3–4), 297–304 (2005). https://doi.org/10.1016/j.cattod.2005.06.041

    Article  CAS  Google Scholar 

  20. Y. Zhou, Study on Process, Property and Theory of Metal Honeycomb Prepared by Plasticizing Powder Extruding and Sintering. PhD Dissertation (Kunming University of Science and Technology, 2007)

    Google Scholar 

  21. Y. Gao, X. Gu, T. Liu, Sintering effect on the performance of tungsten-copper powder liner. J. Wuhan Univ. Technol. 27(6), 1133–1136 (2012). https://doi.org/10.1007/s11595-012-0616-y

    Article  CAS  Google Scholar 

  22. K. Guo, M. Li, Q. Gong et al., Experimental investigation on steel foams fabricated by sintering-dissolution process. Mater. Manuf. Process. 31(12), 1597–1602 (2016). https://doi.org/10.1080/10426914.2015.1103852

    Article  CAS  Google Scholar 

  23. A.M. Hayes, A. Wang, B.M. Dempsey et al., Mechanics of linear cellular alloys. Mech. Mater. 36(8), 691–713 (2004). https://doi.org/10.1016/j.mechmat.2003.06.001

    Article  Google Scholar 

  24. Y. Zhou, Z.C. Hong, X.P. Ai et al., Manufacture, structure and properties of copper foams. Adv. Mater. Res. 652, 1163–1166 (2013). https://doi.org/10.4028/www.scientific.net/AMR.652-654.1163

    Article  CAS  Google Scholar 

  25. S. Xie, J.R.G. Evans, High porosity copper foam. J. Mater. Sci. 39(18), 5877–5880 (2004). https://doi.org/10.1023/B:JMSC.0000040107.04387.b7

    Article  CAS  Google Scholar 

  26. Y.Y. Zhao, T. Fung, L.P. Zhang et al., Lost carbonate sintering process for manufacturing metal foams. Scr. Mater. 52(4), 295–298 (2005). https://doi.org/10.1016/j.scriptamat.2004.10.012

    Article  CAS  Google Scholar 

  27. M.T. Malachevsky, G. Bertolino, E. Oliber et al., Tomographic characterization of copper cellular bodies fabricated by a powder metallurgy route. Mater. Res. Express 6(5), 1–10 (2019). https://doi.org/10.1088/2053-1591/ab0310

    Article  CAS  Google Scholar 

  28. C. Yang, L. Shouhang, Y. Tao et al., Research on the thermal conductivity of metals based on first principles. Acta Metall. Sin 57(3), 375–384 (2021). https://doi.org/10.11900/0412.1961.2020.00250

    Article  CAS  Google Scholar 

  29. J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 46(6), 559–632 (2001). https://doi.org/10.1016/S0079-6425(00)00002-5

    Article  CAS  Google Scholar 

  30. W.J. Mantle, W.S. Chang, Effective thermal conductivity of sintered metal fibers. J. Thermophys. Heat Transf. 5(4), 545–549 (1991). https://doi.org/10.2514/3.299

    Article  CAS  Google Scholar 

  31. L.S. Verma, A.K. Shrotriya, R. Singh et al., Prediction and measurement of effective thermal conductivity of three-phase systems. J. Phys. D 24(9), 1515–1526 (1991)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the National Nature Science Foundation of China (Grant No. 51861020) for providing the financial support for this work. The authors would like to thank Yunnan Key Laboratory of New Material Producing and Processing for technical supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Zhou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Liang, J., Song, S. et al. Microstructure and properties of copper honeycombs prepared by powder extruding and sintering process. J Porous Mater 29, 1969–1979 (2022). https://doi.org/10.1007/s10934-022-01305-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01305-2

Keywords

Navigation