Abstract
A mesoporous sample of SBA-15 type was prepared by co-condensation of sodium metasilicate as a structure-forming reagent and silanes with phosphonic and phenyl groups. The proposed synthesis approach involves a minimum of stages during template synthesis to produce bifunctional material. Physicochemical methods have shown that the sample has an ordered mesoporous (4.4 nm) hexagonal structure and contains 0.41 × 10–3 mol/g of ion-exchange phosphonic groups, as well as phenyl groups. The benefits of incorporating such diverse groups which are capable of different types of adsorbate interactions have been demonstrated in the adsorption of Eu(III) (70.3 mg/g) and methylene blue (MB) (200 mg/g) cations. It was determined that the Eu(III) ions adsorption equilibrium was established within 1 h, while for MB—within 16 h. Kinetics data were best fitted by the pseudo-second order equation indicating several mechanisms that control the rate of sorption removal of cations. IR spectra and compliance of Eu(III) and MB sorption isotherms with the Langmuir adsorption model prove chemisorption. Still, the ratio between the content of phosphonic groups and adsorbed cations represents the existence of additional interactions. Such types of mesoporous silica materials have been shown to be promising for application in water treatment.
Similar content being viewed by others
References
K.A. Venkatesan, D.K. Patre, K.N. Sabharwal, T.G. Srinivasan, P.R. Vasudeva Rao, Kinetics of uranium extraction by macroporous bifunctional phosphinic acid resin. Solv Extr Ion Exch 18, 551–565 (2000)
T. Ogata, H. Narita, M. Tanaka, Adsorption behavior of rare earth elements on silica gel modified with diglycol amic acid. Hydrometallurgy 152, 178–182 (2015). https://doi.org/10.1016/j.hydromet.2015.01.005
T.M. Budnyak, S. Aminzadeh, I.V. Pylypchuk, D. Sternik, V.A. Tertykh, M.E. Lindström, O. Sevastyanova, Methylene Blue dye sorption by hybrid materials from technical lignins. J. Environ. Chem. Eng. 6(4), 4997–5007 (2018). https://doi.org/10.1016/j.jece.2018.07.041
A. Dabrowski, M. Barczak, O.A. Dudarko, Y.L. Zub, Preparation and characterization of polysiloxane xerogels having covalently attached phosphoric groups. Pol. J. Chem. 81(4), 475–483 (2007)
O.A. Dudarko, I.V. Mel’nik, Y.L. Zub, A.A. Chuiko, A. Dabrowski, Synthesis of polysiloxane xerogels using tetraethoxysilane/(diethylphosphatoethyl) triethoxysilane system. Colloid J. 67(6), 683–687 (2005)
D. Jiang, Y. Deng, G. Gao, L. Wu, H. Yanga, Self-assembly of silica nanowires in a microemulsion system and their adsorption capacity. Coll Surf. A 538, 526–533 (2018). https://doi.org/10.1016/j.colsurfa.2017.11.014
T. Koźlecki, I. Polowczyk, A. Bastrzyk, W. Sawiński, Improved synthesis of nanosized silica in water-in-oil microemulsions. J Nanoparticles 2016, 8203260 (2016). https://doi.org/10.1155/2016/8203260
E. Juère, J. Florek, D. Larivière, K. Kim, F. Kleitz, Support effects in rare earth element separation using diglycolamide-functionalized mesoporous silica. New J. Chem. 40, 4325–4334 (2016). https://doi.org/10.1039/C5NJ03147H
O.A. Dudarko, C. Gunathilake, N.P. Wickramaratne, V.V. Sliesarenko, Y.L. Zub, Synthesis of mesoporous silica-tethered phosphonic acid sorbents for uranium species from aqueous solutions. Coll Surf. A 482, 1–8 (2015). https://doi.org/10.1016/j.colsurfa.2015.04.016
I.V. Melnyk, M. Fatnassi, T. Cacciaguerra, Y.L. Zub, B. Alonso, Spray-dried porous silica microspheres functionalised by phosphonic acid groups. Microporous Mesoporous Mater. 152, 172–177 (2012). https://doi.org/10.1016/j.micromeso.2011.11.038
J. Xiao, J. Wang, H. Fan, Q. Zhou, X. Liu, Recent advances of adsorbents in solid phase extraction for environmental samples. Int. J. Environ. Anal. Chem. 96(5), 407–435 (2016). https://doi.org/10.1080/03067319.2016.1150459
D. Zhao, J. Sun, Q. Li, G.D. Stucky, Morphological control of highly ordered mesoporous silica SBA-15. Chem. Mater. 12(2), 275–279 (2000). https://doi.org/10.1021/cm9911363
I.V. Melnyk, V.P. Goncharyk, L.I. Kozhara, G.R. Yurchenko, A.K. Matkovsky, Y.L. Zub, B. Alonso, Sorption properties of mesoporous spray-drying microspheres with the residues of phosphonic acids. Microporous Mesoporous Mater. 153, 171–177 (2012). https://doi.org/10.1016/j.micromeso.2011.12.027
J. Florek, S. Giret, E. Juère, D. Larivière, F. Kleitz, Functionalization of mesoporous materials for lanthanide and actinide extraction. Dalton Trans. 45(38), 14832–14854 (2016). https://doi.org/10.1039/C6DT00474A
N.G. Kobylinska, O.A. Dudarko, I.V. Melnyk, G.A. Seisenbaeva, V.G. Kessler, Luminescence performance of Cerium(III) ions incorporated into organofunctional mesoporous silica. Microporous Mesoporous Mater. 305, 110331–110340 (2020). https://doi.org/10.1016/j.micromeso.2020.110331
J.A.S. Costa, R.A. de Jesus, D.O. Santos, J.B. Neris, R.T. Figueiredo, C.M. Paranhos, Synthesis, functionalization, and environmental application of silica-based mesoporous materials of the M41S and SBA-n families: a review. J. Environ. Chem. Eng. 9(3), 105259 (2021). https://doi.org/10.1016/j.jece.2021.105259
Z.M. Ghodsi, R. Shima, M. Fatemeh, B. Alireza, The synthesis and application of functionalized mesoporous silica SBA-15 as heterogeneous catalyst in organic synthesis. Curr. Org. Chem. 25(3), 361–387 (2021). https://doi.org/10.2174/1385272824999201210194444
X. Zheng, Z. Song, E. Liu, Y. Zhang, Z. Li, Preparation of phosphoric acid-functionalized SBA-15 and its high efficient selective adsorption separation of lanthanum ions. J. Chem. Eng. Data 65(2), 746–756 (2020). https://doi.org/10.1021/acs.jced.9b00976
B. Bera, N. Das, Synthesis of high surface area mesoporous silica SBA-15 for hydrogen storage application. Int. J. Appl. Ceram. Technol. 16, 294–303 (2019). https://doi.org/10.1111/ijac.13082
L. Paul, S. Mukherjee, S. Chatterjee, A. Bhaumik, D. Das, Organically functionalized mesoporous SBA-15 type material bearing fluorescent sites for selective detection of HgII from aqueous medium. ACS Omega 4(18), 17857–17863 (2019). https://doi.org/10.1021/acsomega.9b02631
V. Balaram, Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front. 10(4), 1285–1303 (2019). https://doi.org/10.1016/j.gsf.2018.12.005
A. Graillot, D. Bouyer, S. Monge, J.-J. Robin, P. Loison, C. Faur, Sorption properties of a new thermosensitive copolymeric sorbent bearing phosphonic acid moieties in multi-component solution of cationic species. J. Hazard. Mater. 260, 425–433 (2013). https://doi.org/10.1016/j.jhazmat.2013.05.050
Chiarizia R., Horwitz E.P., D’Arcy K.A., Alexandratos S.D., Trochimzuk A.W. Uptake of actinides and other ions by dipiosil, A new silica based chelating ion exchange resin, in: J.A. Greig (Ed.), Ion Exchange Developments and Applications, Proceedings of IEX, The Royal Society of Chemistry, UK, 1996, p. 321
R.C. Brahmmananda, V. S., Jayalakshmi S., Sivaraman N., Vasudeva Rao P. R., Studies on extraction of actinides by unsymmetrical diamylbutyl phosphonate. Radiochim. Acta 103(4), 235–243 (2015). https://doi.org/10.1515/ract-2014-2301
N. Sato, M. Goto, S. Matsumoto, S. Shinkai, Lipophilic phenylphosphonic acid-lanthanide ion complexes which show efficient energy-transfer luminescence. Tetrahedron Lett. 34(30), 4847–4850 (1993). https://doi.org/10.1016/S0040-4039(00)74106-2
H. Karpinska, U. Kotowska, Removal of organic pollution in the water environment. Water 11(10), 2017 (2019). https://doi.org/10.3390/w11102017
D. Parida, K.A. Salmeia, A. Sadeghpour, S. Zhao, A.K. Maurya, K.I. Assaf, E. Moreau, R. Pauer, S. Lehner, M. Jovic, H. Cordula, S. Gaan, Template-free synthesis of hybrid silica nanoparticle with functionalized mesostructure for efficient methylene blue removal. Mater. Des. 201, 109494 (2021). https://doi.org/10.1016/j.matdes.2021.109494
J.R. Deka, C.L. Liu, T.H. Wang, W.C. Chang, H.M. Kao, Synthesis of highly phosphonic acid functionalized benzene-bridged periodic mesoporous organosilicas for use as efficient dye adsorbents. J. Hazard. Mater. 278, 539–550 (2014). https://doi.org/10.1016/j.jhazmat.2014.06.016
C.M. Sevrain, M. Berchel, H. Couthon, P.-A. Jaffrès, Phosphonic acid: preparation and applications. Beilstein J. Org. Chem. 13, 2186–2213 (2017). https://doi.org/10.3762/bjoc.13.219
G.H. Barnes, M.P. David, Synthesis and hydrolytic stability of some organosilicon phosphonate esters. J. Org. Chem. 25(7), 1191–1194 (1960). https://doi.org/10.1021/jo01077a0301
R. Ciriminna, A. Fidalgo, V. Pandarus, F. Béland, L.M. Ilharco, M. Pagliaro, The sol–gel route to advanced silica-based materials and recent applications. Chem. Rev. 113(8), 6592–6620 (2013). https://doi.org/10.1021/cr300399c
V.M. Gun’ko, Composite materials: textural characteristics. Appl. Surf. Sci. 307, 444–454 (2014). https://doi.org/10.1016/j.apsusc.2014.04.055
D. Margolese, J.A. Melero, S.C. Christiansen, B.F. Chmelka, G.D. Stucky, Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups. Chem. Mater. 12(8), 2448–2459 (2000). https://doi.org/10.1021/cm0010304
H.I. Meléndez-Ortiz, A. Mercado-Silva, L.A. García-Cerda, G. Castruita, Y.A. Perera-Mercado, Hydrothermal synthesis of mesoporous silica MCM-41 using commercial sodium silicate. J. Mex. Chem. Soc. 57(2), 73–79 (2013)
K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquérol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. (Recommendations 1984). Pure Appl. Chem. 57(4), 603–619 (1985). https://doi.org/10.1351/pac198557040603
S. Lowell, J.E. Shields, M.A. Thomas, M. Thommes, Mesopore Analysis, in Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Particle Technology Series. (Springer, Dordrecht, 2004)
I.V. Melnyk, V.V. Tomina, N.V. Stolyarchuk, G.A. Seisenbaeva, V.G. Kessler, Organic dyes (acid red, fluorescein, methylene blue) and copper(II) adsorption on amino silica spherical particles with tailored surface hydrophobicity and porosity. J. Mol. Liq. 336, 116301 (2021). https://doi.org/10.1016/j.molliq.2021.116301
V.V. Tomina, N.V. Stolyarchuk, A. Katelnikovas, M. Misevicius, M. Kanuchova, A. Kareiva, A. Beganskienė, I.V. Melnyk, Preparation and luminescence properties of europium(III)-loaded aminosilica spherical particles. Coll Surf. A 608, 125552 (2021). https://doi.org/10.1016/j.colsurfa.2020.125552
K. Binnemans, Interpretation of europium(III) spectra. Coord. Chem. Rev. 295, 1–45 (2015). https://doi.org/10.1016/j.ccr.2015.02.015
Bokanyi L. Some applications of Tóth-isotherm in mineral processing. XXVI International mineral processing congress (IMPC-2012) proceedings, New Delhi, India, 24–28 September 2012, Paper N1061. DOI: https://doi.org/10.13140/2.1.2044.8009
S.J. Allen, Q. Gan, R. Matthews, P.A. Johnson, Comparison of optimised isotherm models for basic dye adsorption by kudzu. Biores. Technol. 88(2), 143–152 (2003). https://doi.org/10.1016/S0960-8524(02)00281-X
A.S. Zola, M.A.S.D. Barros, E.F. Sousa-Aguiar, P.A. Arroyo, Determination of the maximum retention of cobalt by ion exchange in h-zeolites. Braz. J. Chem. Eng. 29(2), 385–392 (2012). https://doi.org/10.1590/S0104-66322012000200018
A.M. Turner, M.J. Abplanalp, T.J. Blair, R. Dayuha, R.I. Kaiser, An infrared spectroscopic study toward the formation of alkylphosphonic acids and their precursors in extraterrestrial environments. Astrophys J Suppl Series 234(1), 6 (2018). https://doi.org/10.3847/1538-4365/aa9183
L. Dolatyari, M.R. Yaftian, S. Rostamnia, Adsorption characteristics of Eu(III) and Th(IV) ions onto modified mesoporous silica SBA-15 materials. J. Taiwan Inst. Chem. Eng. 60, 174–184 (2016). https://doi.org/10.1016/j.jtice.2015.11.004
I.M. Ali, Sorption studies of 134Cs, 60Co and 152+154Eu on phosphoric acid activated silico-antimonate crystals in high acidic media. Chem. Eng. J. 155, 580–585 (2009). https://doi.org/10.1016/j.cej.2009.07.050
F. Liu, W. Huang, S. Wang, B. Hu, Investigation of adsorption properties and mechanism of uranium(VI) and europium(III) on magnetic amidoxime-functionalized MCM-41. Appl. Surf. Sci. 594, 153376 (2022). https://doi.org/10.1016/j.apsusc.2022.153376
L. Usgodaarachchi, C. Thambiliyagodage, R. Wijesekera, M.G. Bakker, Synthesis of mesoporous silica nanoparticles derived from rice husk and surface-controlled amine functionalization for efficient adsorption of methylene blue from aqueous solution. Curr. Res. Green Sustain. Chem. 4, 100116 (2021). https://doi.org/10.1016/j.crgsc.2021.100116
Acknowledgements
The authors are grateful for the funding of the research from the VEGA 2/0156/19 and APVV-19-0302 projects.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Melnyk, I.V., Tomina, V.V., Stolyarchuk, N.V. et al. Affordable phosphonic- and phenyl-functionalized silicate adsorbent for metal and dye cations uptake. J Porous Mater 29, 1829–1838 (2022). https://doi.org/10.1007/s10934-022-01292-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10934-022-01292-4