Skip to main content
Log in

Affordable phosphonic- and phenyl-functionalized silicate adsorbent for metal and dye cations uptake

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A mesoporous sample of SBA-15 type was prepared by co-condensation of sodium metasilicate as a structure-forming reagent and silanes with phosphonic and phenyl groups. The proposed synthesis approach involves a minimum of stages during template synthesis to produce bifunctional material. Physicochemical methods have shown that the sample has an ordered mesoporous (4.4 nm) hexagonal structure and contains 0.41 × 10–3 mol/g of ion-exchange phosphonic groups, as well as phenyl groups. The benefits of incorporating such diverse groups which are capable of different types of adsorbate interactions have been demonstrated in the adsorption of Eu(III) (70.3 mg/g) and methylene blue (MB) (200 mg/g) cations. It was determined that the Eu(III) ions adsorption equilibrium was established within 1 h, while for MB—within 16 h. Kinetics data were best fitted by the pseudo-second order equation indicating several mechanisms that control the rate of sorption removal of cations. IR spectra and compliance of Eu(III) and MB sorption isotherms with the Langmuir adsorption model prove chemisorption. Still, the ratio between the content of phosphonic groups and adsorbed cations represents the existence of additional interactions. Such types of mesoporous silica materials have been shown to be promising for application in water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K.A. Venkatesan, D.K. Patre, K.N. Sabharwal, T.G. Srinivasan, P.R. Vasudeva Rao, Kinetics of uranium extraction by macroporous bifunctional phosphinic acid resin. Solv Extr Ion Exch 18, 551–565 (2000)

    Article  CAS  Google Scholar 

  2. T. Ogata, H. Narita, M. Tanaka, Adsorption behavior of rare earth elements on silica gel modified with diglycol amic acid. Hydrometallurgy 152, 178–182 (2015). https://doi.org/10.1016/j.hydromet.2015.01.005

    Article  CAS  Google Scholar 

  3. T.M. Budnyak, S. Aminzadeh, I.V. Pylypchuk, D. Sternik, V.A. Tertykh, M.E. Lindström, O. Sevastyanova, Methylene Blue dye sorption by hybrid materials from technical lignins. J. Environ. Chem. Eng. 6(4), 4997–5007 (2018). https://doi.org/10.1016/j.jece.2018.07.041

    Article  CAS  Google Scholar 

  4. A. Dabrowski, M. Barczak, O.A. Dudarko, Y.L. Zub, Preparation and characterization of polysiloxane xerogels having covalently attached phosphoric groups. Pol. J. Chem. 81(4), 475–483 (2007)

    CAS  Google Scholar 

  5. O.A. Dudarko, I.V. Mel’nik, Y.L. Zub, A.A. Chuiko, A. Dabrowski, Synthesis of polysiloxane xerogels using tetraethoxysilane/(diethylphosphatoethyl) triethoxysilane system. Colloid J. 67(6), 683–687 (2005)

    Article  CAS  Google Scholar 

  6. D. Jiang, Y. Deng, G. Gao, L. Wu, H. Yanga, Self-assembly of silica nanowires in a microemulsion system and their adsorption capacity. Coll Surf. A 538, 526–533 (2018). https://doi.org/10.1016/j.colsurfa.2017.11.014

    Article  CAS  Google Scholar 

  7. T. Koźlecki, I. Polowczyk, A. Bastrzyk, W. Sawiński, Improved synthesis of nanosized silica in water-in-oil microemulsions. J Nanoparticles 2016, 8203260 (2016). https://doi.org/10.1155/2016/8203260

    Article  CAS  Google Scholar 

  8. E. Juère, J. Florek, D. Larivière, K. Kim, F. Kleitz, Support effects in rare earth element separation using diglycolamide-functionalized mesoporous silica. New J. Chem. 40, 4325–4334 (2016). https://doi.org/10.1039/C5NJ03147H

    Article  CAS  Google Scholar 

  9. O.A. Dudarko, C. Gunathilake, N.P. Wickramaratne, V.V. Sliesarenko, Y.L. Zub, Synthesis of mesoporous silica-tethered phosphonic acid sorbents for uranium species from aqueous solutions. Coll Surf. A 482, 1–8 (2015). https://doi.org/10.1016/j.colsurfa.2015.04.016

    Article  CAS  Google Scholar 

  10. I.V. Melnyk, M. Fatnassi, T. Cacciaguerra, Y.L. Zub, B. Alonso, Spray-dried porous silica microspheres functionalised by phosphonic acid groups. Microporous Mesoporous Mater. 152, 172–177 (2012). https://doi.org/10.1016/j.micromeso.2011.11.038

    Article  CAS  Google Scholar 

  11. J. Xiao, J. Wang, H. Fan, Q. Zhou, X. Liu, Recent advances of adsorbents in solid phase extraction for environmental samples. Int. J. Environ. Anal. Chem. 96(5), 407–435 (2016). https://doi.org/10.1080/03067319.2016.1150459

    Article  CAS  Google Scholar 

  12. D. Zhao, J. Sun, Q. Li, G.D. Stucky, Morphological control of highly ordered mesoporous silica SBA-15. Chem. Mater. 12(2), 275–279 (2000). https://doi.org/10.1021/cm9911363

    Article  CAS  Google Scholar 

  13. I.V. Melnyk, V.P. Goncharyk, L.I. Kozhara, G.R. Yurchenko, A.K. Matkovsky, Y.L. Zub, B. Alonso, Sorption properties of mesoporous spray-drying microspheres with the residues of phosphonic acids. Microporous Mesoporous Mater. 153, 171–177 (2012). https://doi.org/10.1016/j.micromeso.2011.12.027

    Article  CAS  Google Scholar 

  14. J. Florek, S. Giret, E. Juère, D. Larivière, F. Kleitz, Functionalization of mesoporous materials for lanthanide and actinide extraction. Dalton Trans. 45(38), 14832–14854 (2016). https://doi.org/10.1039/C6DT00474A

    Article  CAS  PubMed  Google Scholar 

  15. N.G. Kobylinska, O.A. Dudarko, I.V. Melnyk, G.A. Seisenbaeva, V.G. Kessler, Luminescence performance of Cerium(III) ions incorporated into organofunctional mesoporous silica. Microporous Mesoporous Mater. 305, 110331–110340 (2020). https://doi.org/10.1016/j.micromeso.2020.110331

    Article  CAS  Google Scholar 

  16. J.A.S. Costa, R.A. de Jesus, D.O. Santos, J.B. Neris, R.T. Figueiredo, C.M. Paranhos, Synthesis, functionalization, and environmental application of silica-based mesoporous materials of the M41S and SBA-n families: a review. J. Environ. Chem. Eng. 9(3), 105259 (2021). https://doi.org/10.1016/j.jece.2021.105259

    Article  CAS  Google Scholar 

  17. Z.M. Ghodsi, R. Shima, M. Fatemeh, B. Alireza, The synthesis and application of functionalized mesoporous silica SBA-15 as heterogeneous catalyst in organic synthesis. Curr. Org. Chem. 25(3), 361–387 (2021). https://doi.org/10.2174/1385272824999201210194444

    Article  CAS  Google Scholar 

  18. X. Zheng, Z. Song, E. Liu, Y. Zhang, Z. Li, Preparation of phosphoric acid-functionalized SBA-15 and its high efficient selective adsorption separation of lanthanum ions. J. Chem. Eng. Data 65(2), 746–756 (2020). https://doi.org/10.1021/acs.jced.9b00976

    Article  CAS  Google Scholar 

  19. B. Bera, N. Das, Synthesis of high surface area mesoporous silica SBA-15 for hydrogen storage application. Int. J. Appl. Ceram. Technol. 16, 294–303 (2019). https://doi.org/10.1111/ijac.13082

    Article  CAS  Google Scholar 

  20. L. Paul, S. Mukherjee, S. Chatterjee, A. Bhaumik, D. Das, Organically functionalized mesoporous SBA-15 type material bearing fluorescent sites for selective detection of HgII from aqueous medium. ACS Omega 4(18), 17857–17863 (2019). https://doi.org/10.1021/acsomega.9b02631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. V. Balaram, Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front. 10(4), 1285–1303 (2019). https://doi.org/10.1016/j.gsf.2018.12.005

    Article  CAS  Google Scholar 

  22. A. Graillot, D. Bouyer, S. Monge, J.-J. Robin, P. Loison, C. Faur, Sorption properties of a new thermosensitive copolymeric sorbent bearing phosphonic acid moieties in multi-component solution of cationic species. J. Hazard. Mater. 260, 425–433 (2013). https://doi.org/10.1016/j.jhazmat.2013.05.050

    Article  CAS  PubMed  Google Scholar 

  23. Chiarizia R., Horwitz E.P., D’Arcy K.A., Alexandratos S.D., Trochimzuk A.W. Uptake of actinides and other ions by dipiosil, A new silica based chelating ion exchange resin, in: J.A. Greig (Ed.), Ion Exchange Developments and Applications, Proceedings of IEX, The Royal Society of Chemistry, UK, 1996, p. 321

  24. R.C. Brahmmananda, V. S., Jayalakshmi S., Sivaraman N., Vasudeva Rao P. R., Studies on extraction of actinides by unsymmetrical diamylbutyl phosphonate. Radiochim. Acta 103(4), 235–243 (2015). https://doi.org/10.1515/ract-2014-2301

    Article  CAS  Google Scholar 

  25. N. Sato, M. Goto, S. Matsumoto, S. Shinkai, Lipophilic phenylphosphonic acid-lanthanide ion complexes which show efficient energy-transfer luminescence. Tetrahedron Lett. 34(30), 4847–4850 (1993). https://doi.org/10.1016/S0040-4039(00)74106-2

    Article  CAS  Google Scholar 

  26. H. Karpinska, U. Kotowska, Removal of organic pollution in the water environment. Water 11(10), 2017 (2019). https://doi.org/10.3390/w11102017

    Article  CAS  Google Scholar 

  27. D. Parida, K.A. Salmeia, A. Sadeghpour, S. Zhao, A.K. Maurya, K.I. Assaf, E. Moreau, R. Pauer, S. Lehner, M. Jovic, H. Cordula, S. Gaan, Template-free synthesis of hybrid silica nanoparticle with functionalized mesostructure for efficient methylene blue removal. Mater. Des. 201, 109494 (2021). https://doi.org/10.1016/j.matdes.2021.109494

    Article  CAS  Google Scholar 

  28. J.R. Deka, C.L. Liu, T.H. Wang, W.C. Chang, H.M. Kao, Synthesis of highly phosphonic acid functionalized benzene-bridged periodic mesoporous organosilicas for use as efficient dye adsorbents. J. Hazard. Mater. 278, 539–550 (2014). https://doi.org/10.1016/j.jhazmat.2014.06.016

    Article  CAS  PubMed  Google Scholar 

  29. C.M. Sevrain, M. Berchel, H. Couthon, P.-A. Jaffrès, Phosphonic acid: preparation and applications. Beilstein J. Org. Chem. 13, 2186–2213 (2017). https://doi.org/10.3762/bjoc.13.219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. G.H. Barnes, M.P. David, Synthesis and hydrolytic stability of some organosilicon phosphonate esters. J. Org. Chem. 25(7), 1191–1194 (1960). https://doi.org/10.1021/jo01077a0301

    Article  CAS  Google Scholar 

  31. R. Ciriminna, A. Fidalgo, V. Pandarus, F. Béland, L.M. Ilharco, M. Pagliaro, The sol–gel route to advanced silica-based materials and recent applications. Chem. Rev. 113(8), 6592–6620 (2013). https://doi.org/10.1021/cr300399c

    Article  CAS  PubMed  Google Scholar 

  32. V.M. Gun’ko, Composite materials: textural characteristics. Appl. Surf. Sci. 307, 444–454 (2014). https://doi.org/10.1016/j.apsusc.2014.04.055

    Article  CAS  Google Scholar 

  33. D. Margolese, J.A. Melero, S.C. Christiansen, B.F. Chmelka, G.D. Stucky, Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups. Chem. Mater. 12(8), 2448–2459 (2000). https://doi.org/10.1021/cm0010304

    Article  CAS  Google Scholar 

  34. H.I. Meléndez-Ortiz, A. Mercado-Silva, L.A. García-Cerda, G. Castruita, Y.A. Perera-Mercado, Hydrothermal synthesis of mesoporous silica MCM-41 using commercial sodium silicate. J. Mex. Chem. Soc. 57(2), 73–79 (2013)

    Google Scholar 

  35. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquérol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. (Recommendations 1984). Pure Appl. Chem. 57(4), 603–619 (1985). https://doi.org/10.1351/pac198557040603

    Article  CAS  Google Scholar 

  36. S. Lowell, J.E. Shields, M.A. Thomas, M. Thommes, Mesopore Analysis, in Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Particle Technology Series. (Springer, Dordrecht, 2004)

    Chapter  Google Scholar 

  37. I.V. Melnyk, V.V. Tomina, N.V. Stolyarchuk, G.A. Seisenbaeva, V.G. Kessler, Organic dyes (acid red, fluorescein, methylene blue) and copper(II) adsorption on amino silica spherical particles with tailored surface hydrophobicity and porosity. J. Mol. Liq. 336, 116301 (2021). https://doi.org/10.1016/j.molliq.2021.116301

    Article  CAS  Google Scholar 

  38. V.V. Tomina, N.V. Stolyarchuk, A. Katelnikovas, M. Misevicius, M. Kanuchova, A. Kareiva, A. Beganskienė, I.V. Melnyk, Preparation and luminescence properties of europium(III)-loaded aminosilica spherical particles. Coll Surf. A 608, 125552 (2021). https://doi.org/10.1016/j.colsurfa.2020.125552

    Article  CAS  Google Scholar 

  39. K. Binnemans, Interpretation of europium(III) spectra. Coord. Chem. Rev. 295, 1–45 (2015). https://doi.org/10.1016/j.ccr.2015.02.015

    Article  CAS  Google Scholar 

  40. Bokanyi L. Some applications of Tóth-isotherm in mineral processing. XXVI International mineral processing congress (IMPC-2012) proceedings, New Delhi, India, 24–28 September 2012, Paper N1061. DOI: https://doi.org/10.13140/2.1.2044.8009

  41. S.J. Allen, Q. Gan, R. Matthews, P.A. Johnson, Comparison of optimised isotherm models for basic dye adsorption by kudzu. Biores. Technol. 88(2), 143–152 (2003). https://doi.org/10.1016/S0960-8524(02)00281-X

    Article  CAS  Google Scholar 

  42. A.S. Zola, M.A.S.D. Barros, E.F. Sousa-Aguiar, P.A. Arroyo, Determination of the maximum retention of cobalt by ion exchange in h-zeolites. Braz. J. Chem. Eng. 29(2), 385–392 (2012). https://doi.org/10.1590/S0104-66322012000200018

    Article  CAS  Google Scholar 

  43. A.M. Turner, M.J. Abplanalp, T.J. Blair, R. Dayuha, R.I. Kaiser, An infrared spectroscopic study toward the formation of alkylphosphonic acids and their precursors in extraterrestrial environments. Astrophys J Suppl Series 234(1), 6 (2018). https://doi.org/10.3847/1538-4365/aa9183

    Article  CAS  Google Scholar 

  44. L. Dolatyari, M.R. Yaftian, S. Rostamnia, Adsorption characteristics of Eu(III) and Th(IV) ions onto modified mesoporous silica SBA-15 materials. J. Taiwan Inst. Chem. Eng. 60, 174–184 (2016). https://doi.org/10.1016/j.jtice.2015.11.004

    Article  CAS  Google Scholar 

  45. I.M. Ali, Sorption studies of 134Cs, 60Co and 152+154Eu on phosphoric acid activated silico-antimonate crystals in high acidic media. Chem. Eng. J. 155, 580–585 (2009). https://doi.org/10.1016/j.cej.2009.07.050

    Article  CAS  Google Scholar 

  46. F. Liu, W. Huang, S. Wang, B. Hu, Investigation of adsorption properties and mechanism of uranium(VI) and europium(III) on magnetic amidoxime-functionalized MCM-41. Appl. Surf. Sci. 594, 153376 (2022). https://doi.org/10.1016/j.apsusc.2022.153376

    Article  CAS  Google Scholar 

  47. L. Usgodaarachchi, C. Thambiliyagodage, R. Wijesekera, M.G. Bakker, Synthesis of mesoporous silica nanoparticles derived from rice husk and surface-controlled amine functionalization for efficient adsorption of methylene blue from aqueous solution. Curr. Res. Green Sustain. Chem. 4, 100116 (2021). https://doi.org/10.1016/j.crgsc.2021.100116

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the funding of the research from the VEGA 2/0156/19 and APVV-19-0302 projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inna V. Melnyk.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnyk, I.V., Tomina, V.V., Stolyarchuk, N.V. et al. Affordable phosphonic- and phenyl-functionalized silicate adsorbent for metal and dye cations uptake. J Porous Mater 29, 1829–1838 (2022). https://doi.org/10.1007/s10934-022-01292-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01292-4

Keywords

Navigation