Skip to main content
Log in

Effects of different pore structures on loading and sustained-release of mitomycin C by hollow mesoporous Fe(0)@mSiO2

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Herein, we developed the dual-function template method to fabricate hollow magnetic nano-spheres (denoted as HMFe–Si–Cn, n = 16, 18) with a mesoporous shell and hollow interior structure using alkyl chain trimethoxysilane templating. The shorter chain template directed formation of HMFe–Si–C16 with size of 119 nm, having disordered inkbottle type mesopores and saturation magnetization of 50.01 emu/g higher than that of HMFe–Si–C18 with cylindrical type mesopores. In addition, the HMFe–Cn loaded with MMC diaplays a pH and magnetic dual responsive drug release behavior. By contrast, Mitomycin C (MMC) loading efficiency of HMFe–Si–C16 was higher owing to the fact that the pore size, surface area, and pore volume of HMFe–Si–C16 were larger than those of HMFe–Si–C18. Besides, MMC loaded HMFe–Si–Cn hollow spheres showed a clear pH-dependent drug release behavior, having a higher release rate in acidic environments of pH 5.7. For the pH 5.7 and 7.4 release, the release kinetic for HMFe–Si–C16–MMC composites follows pseudo-first-order attributable to its special pore structure. With Fe(0) as a core, HMFe–Si–Cn is distinguished for higher magnetic properties, and it is more conducive to magnetic targeted treatment of cancer cells and can release drugs through external magnetic field. In addition, HMFe–Si–Cn has lower cytotoxicity and better biocompatibility. For this reason the inner cavity of HMFe–Si–C16 could be labeled with radioisotope 99Tcm to study the magnetic targeting distribution of HMFe–Si–C16 in vivo, and its cytotoxicity against in vitro HeLa cells was also studied. These results indicate the potential of HMFe–Si–C16 in the magnetic targeted drug delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Sastry, R. Fiala, R. Lipman, M. Tomasz, D.J. Patel, Solution structure of the monoalkylated mitomycin C-DNA complex. J. Mol. Biol. 247, 247–338 (1995)

    Article  Google Scholar 

  2. A.C. Sartorelli, W.F. Hodnick, M.F. Belcourt, M. Tomasz, B. Haffty, J.J. Fischer, S. Rockwell, Mitomycin C: a prototype bioreductive agent. Oncol. Res. 6, 501–508 (1994)

    CAS  PubMed  Google Scholar 

  3. M. Önol, Z. Aktaş, B. Hasanreisoğlu, Enhancement of the success rate in trabeculectomy: large-area mitomycin-C application. Clin. Exp. Ophthalmol. 36(4), 316–322 (2008)

    Article  Google Scholar 

  4. Y. Zhu, W.G. Lu, L.Y. Zou, J.F. Feng, Magnetic nanoparticles of Mitomycin C I. Preparation and quality evaluation. Chin. J. Pharm 37(3), 168–171 (2006)

    CAS  Google Scholar 

  5. M.E. Sharifabad, T. Mercer, T. Sen, The fabrication and characterization of stable core-shell superparamagnetic nanocomposites for potential application in drug delivery. J. Appl. Phys. 117(17), 17D139 (2015)

    Article  Google Scholar 

  6. L. Yuan, X.R. Qi, Preparation and in vitro characterization of ATRA loaded mPEG-PLA diblock copolymeric micelles. Chin. J. New Drugs 17(3), 217–224, 227 (2008)

    Google Scholar 

  7. S. Zhou, Q. Zhong, Y. Wang et al., Chemically engineered mesoporous silica nanoparticles-based intelligent delivery systems for theranostic applications in multiple cancerous/non-cancerous diseases. Coord. Chem. Rev. 452(1), 214309 (2022)

    Article  CAS  Google Scholar 

  8. K. Wang, J. Lu, J. Li et al., Current trends in smart mesoporous silica-based nanovehicles for photoactivated cancer therapy. J. Control Release 339(1), 445–472 (2021)

    Article  CAS  Google Scholar 

  9. W. Lei, C. Sun, T. Jiang et al., Polydopamine-coated mesoporous silica nanoparticles for multi-responsive drug delivery and combined chemo-photothermal therapy. Mater. Sci. Eng. C. 105, 110103 (2019)

    Article  CAS  Google Scholar 

  10. L. Zhang, T. Wang, L. Yang, C. Liu, C. Wang, H. Liu, Y.A. Wang, Z. Su, General route to multifunctional uniform yolk/mesoporous silica shell nanocapsules: a platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery. Chem. Eur. J. 18(39), 12512–12521 (2012)

    Article  CAS  Google Scholar 

  11. J. Liu, S.Z. Qiao, S.B. Hartono, G.Q. Lu, Monodisperse yolk-shell nanoparticleswith a hierarchical porous structure for delivery vehicles and nanoreactors. Angew. Chem. Int. Ed. 49(29), 4981–4985 (2010)

    Article  CAS  Google Scholar 

  12. P.B. Santhosh, N.P. Ulrih, Multifunctional superparamagnetic iron oxide nanoparticles: promising tools in cancer theranostics. Cancer Lett. 336(1), 8–17 (2013)

    Article  CAS  Google Scholar 

  13. M.M. Song, H. Bi, Y. Zhang, Fabrication of Fe@mSiO2 nanowires with large remanence and low cytotoxicity for targeted drug delivery. J. Appl. Phys. 111(7), 07B302 (2012)

    Article  Google Scholar 

  14. J. Yang, F. Zhang, Y. Chen, S. Qian, P. Hu, W. Li, Y. Deng, Y. Fang, L. Han, M. Luqman, D. Zhao, Core-shell Ag@SiO2@mSiO2 mesoporous nanocarriers for metal-enhanced fluorescence. Chem. Commun. 47, 11618–11620 (2011)

    Article  CAS  Google Scholar 

  15. C. Wu, Z.Y. Lim, C. Zhou, W.G. Wang, S. Zhou, H. Yin, Y. Zhu, A soft-templated method to synthesize sintering-resistant Au–mesoporous-silica core–shell nanocatalysts with sub-5 nm single-cores. Chem. Commun. 49, 3215e–33217 (2013)

    Article  Google Scholar 

  16. T. Ohhashi, T. Tsuruoka, K. Inoue et al., An integrated function system using metal nanoparticle@ mesoporous silica@ metal-organic framework hybrids. Microporous Mesoporous Mater. 245, 04–108 (2017)

    Article  Google Scholar 

  17. T. Liu, Novel hierarchically structured nanocomposites for biomedical applications[D]. Curtin University, (2017)

  18. W. Zhao, H. Chen, Y. Li, L. Li, M. Lang, J. Shi, Uniform rattle-type hollow magnetic mesoporous spheres as drug delivery carriers and their sustained-release property. Adv. Funct. Mater. 18(18), 2780–2788 (2008)

    Article  CAS  Google Scholar 

  19. J. Zhang, C.Q. Lan, M. Post, B. Simard, Y. Deslandes, T.H. Hsieh, Design of nanoparticles as drug carriers for cancer therapy. Cancer Genom. Proteom. 3(3–4), 147–158 (2006)

    CAS  Google Scholar 

  20. Y.X. Yang, H.P. Ying, J.G. Shao, A study on effect of different template chain length on synthesis of mesoporous silica in acidic condition. J. Am. Ceram. Soc. 90(11), 3460–3467 (2007)

    Article  CAS  Google Scholar 

  21. J.J. Yuan, X. Zhang, H. Qian, A novel approach to fabrication of superparamagnetite hollow silica/magnetic composite spheres. J. Magn. Mag. Mater. 322(15), 2172–2176 (2010)

    Article  CAS  Google Scholar 

  22. S.Q. Shah, M.R. Khan, S.M. Ali, Radiosynthesis of 99mTc(CO)3-clinafloxacin dithiocarbamate and its biological evaluation as a potential Staphylococcus aureus infection radiotracer. Nucl. Med. Mol. Imaging 45, 248–254 (2011)

    Article  CAS  Google Scholar 

  23. Y. Chen, H. Chen, L. Guo, Q. He, F. Chen, J. Zhou, J. Feng, J. Shi, Hollow/rattle-type mesoporous nanostructures by structural difference-based selective etching strategy. ACS Nano 4(1), 529–539 (2010)

    Article  CAS  Google Scholar 

  24. J.M. Yan, Q. Zhang, J.C. Gao, Adsorption and coacervation (Beijing Science Press, Beijing, 1986), p. 115

    Google Scholar 

  25. K.S.W. Sing, R.T. Williams, Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorpt. Sci. Technol. 22(10), 773–782 (2004)

    Article  CAS  Google Scholar 

  26. W.D. Xiang, Y.X. Yang, J.L. Zheng, Synthesis of mesoporous silica using cationic surfactant templating in different inorganic acid source. Mater. Sci.-Poland 28(3), 709–730 (2010)

    CAS  Google Scholar 

  27. K. Morishige, M. Tateishi, F. Hirose, K. Aramaki, Change in desorption mechanism from pore blocking to cavitation with temperature for nitrogen in ordered silica with cagelike pores. Langmuir 22(22), 9220–9224 (2006)

    Article  CAS  Google Scholar 

  28. J.B. Zhang, Y.X. Yang, J.L. Zheng, Chin, Synthesis of mesoporous silica with a three-dimensional hexagonal ordered structure using cationic and amphoteric mixed surfactants. J. Inorg. Chem. 27(9), 1817–1829 (2011)

    CAS  Google Scholar 

  29. K. Morishige, N. Tateishi, Adsorption hysteresis in ink-bottle pore. J. Chem. Phys. 119(4), 2301–2306 (2003)

    Article  CAS  Google Scholar 

  30. R. Bhaskar, S.R.S. Murthy, B.D. Miglani, K. Viswanathan, Novel method to evaluate diffusion controlled release of drug from resinate. Int. J. Pharm. 28(1), 59–66 (1986)

    Article  CAS  Google Scholar 

  31. L. Xu, J. Dai, J. Pan, X. Li, P. Huo, Y. Yan, X. Zou, R. Zhang, Performance of rattle-type magnetic mesoporous silica spheres in the adsorption of single and binary antibiotics. Chem. Eng. J. 174, 221–230 (2011)

    Article  CAS  Google Scholar 

  32. Y. Hua, Z. Zhi, Q. Zhao, C. Wu, P. Zhao, H. Jiang, T. Jiang, S. Wang, 3D cubic mesoporous silica microsphere as a carrier for poorly soluble drug carvedilol. Microporous Mesoporous Mater 147(1), 94–101 (2012)

    Article  Google Scholar 

  33. J.X. Zhang, Q. Zhang, A.D. Huang, Determination of biodistribution of galactose polyhydroxyethylglutamine in mice with isotope 99mTc labeling. J. Instrum. Anal. 22(3), 69–71 (2003)

    Google Scholar 

  34. M.C.F. Passos, C.F. Ramos, M. Bernardo-Filho, D.M.M. De Mattos, E.G. Moura, The effect of protein or energy restriction on the biodistribution of Na99TcmO4 in Wistar rats. Nucl. Med. Commun. 21(11), 1059–1062 (2000)

    Article  CAS  Google Scholar 

  35. X. Xie, S. Deng, Comparative study on observing vascular crisis of rabbits with replanted limb by Na99TcmO4 trace imaging. Nucl. Tech. 11, 011 (2005)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (20577010, 20971043), the Fundamental Research Funds for the Central Universities, and the Open Project Program of State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University.

Author information

Authors and Affiliations

Authors

Contributions

ZC: Methodology, Software, Investigation, Validation. YY: Conceptualization, Writing—original draft, Writing—review & editing Supervision, Writing—review & editing, Funding acquisition. HL: bioexperiment. HY: Conceptualization, Methodology, Writing—review & editing. CN: Supervision, Writing—review & editing.

Corresponding authors

Correspondence to Yuxiang Yang or Chaoying Ni.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Z., Li, H., Yang, Y. et al. Effects of different pore structures on loading and sustained-release of mitomycin C by hollow mesoporous Fe(0)@mSiO2. J Porous Mater 29, 1489–1505 (2022). https://doi.org/10.1007/s10934-022-01271-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01271-9

Keywords

Navigation