Skip to main content

Advertisement

Log in

Olive stones based carbon foam: synthesis, characterization and application on post-combustion CO2 adsorption

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In the present paper, the performance of carbon foams to adsorb CO2 in post-combustion conditions using a thermo-gravimetric analyzer was investigated. Two types of carbon foams were prepared in this study from molten sucrose and activated carbon powder as foaming and foam setting agents by adding or not of nitric acid. Both carbon foams were subjected to chemical and textural characterization such as FT-IR, Boehm titration, SEM and physical adsorption. Then, these materials were evaluated for CO2 adsorption in a binary mixture (10% CO2 + 90% N2), representative of post-combustion conditions, at two temperatures 25 and 50 °C. The obtained carbon foams present a hierarchical macro–micro pore structure with narrow-micropores in the cell walls and micropores sizes of less than 0.6 nm. The produced adsorbent materials showed a high and competitive CO2 uptake in pure flow at 0 °C with a CO2 adsorption capacity of up to 3 mmol g−1. In addition, carbon foams adsorbents showed high CO2/N2 selectivity in binary (CO2 + N2) adsorption/desorption tests thanks to their very narrow microporosity not accessible for N2 molecules but accessible to CO2. Thus, biomass-based carbon foams are promising candidates to selectively capture CO2 in post-combustion conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated or analyzed during this study are available in [Data Availaibility Statement.rar] repository, [https://drive.google.com/file/d/1hkfXFCfYaI0HGUa2RF0grRGHkv2Lb5iP/view?usp=sharing].

Abbreviations

C:

Constant related to the boundary layer thickness

E0 :

Characteristic energy (kJ/mol)

k1 :

The pseudo-first order rate constant (s−1)

k2 :

The pseudo-second order rate constant (wt% s−1)

kint :

The intra-particle diffusion rate constant (wt% s−0.5)

L0 :

The narrow micropores width (nm)

P:

Pressure (bar)

P0 :

P0 Pression de saturation de l’adsorbat (bar)

P/P0 :

Relative pressure

qe :

The adsorbed amount of CO2 at equilibrium (wt%)

qt :

The adsorbed amount of CO2 at a given point of time t (wt%)

qe,cal :

The calculated amount of CO2 at equilibrium (wt%.)

qe,exp :

The experimental amount of CO2 at equilibrium (wt%)

Smic :

The micropore surface (m g−1)

T:

Temperature (°C)

t:

Time (min)

W0 :

The narrow micropore volume (cm3 g−1)

C12H22O11 :

Sucrose

C3H6O:

Acetone

CF900:

Carbon foam prepared using nitric acid

FESEM:

Fields emission scanning electron microscopy

FTIR:

Fourier transform infrared spectroscopy

H3PO4 :

Phosphoric acid

Image J:

Software from the SEM microstructure

IPCC:

Intergovernmental panel on climate change

LDF:

Pseudo-first order model

NH3 :

Nitric acid

NF900:

Carbon foam prepared without nitric acid

NLDFT:

Non-local density function theory

AC:

Olive stones based activated carbon

pHPZC :

PH at the point of zero charge

QDF:

Pseudo-second order model

SEM:

Scanning electron microscopy

References

  1. IPCC, in IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change, ed. by B. Metz, O. Davidson, H.C. de Coninck, M. Loos, L.A. Meyer (Cambridge University Press, Cambridge/New York), 442 pp

  2. IPCC, in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. by O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel, J.C. Minx (Cambridge University Press, Cambridge/New York)

  3. H. Zhao, X. Luo, H. Zhang, N. Sun, W. Wei, Y. Sun, Carbon-based adsorbents for post-combustion capture: a review. Greenh. Gases Sci. Technol. (2018). https://doi.org/10.1002/ghg.1758

    Article  Google Scholar 

  4. N.A. Rashid, S. Yusup, An overview of activated carbons utilization for the post-combustion carbon dioxide capture. J. CO2 Util. (2016). https://doi.org/10.1016/j.jcou.2015.11.002

    Article  Google Scholar 

  5. S. Liu, Y. Jin, J.S. Bae, Z. Chen, P. Dong, S. Zhao, R. Li, CO2 derived nanoporous carbons for carbon capture. Microporous Mesoporous Mater. (2020). https://doi.org/10.1016/j.micromeso.2020.110356

    Article  Google Scholar 

  6. D.Y.C. Leung, G. Caramanna, M.M. Maroto-Valer, An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. (2014). https://doi.org/10.1016/j.rser.2014.07.093

    Article  Google Scholar 

  7. A. Heidari, H. Younesi, A. Rashidi, A.A. Ghoreyshi, Evaluation of CO2 adsorption with eucalyptus wood based activated carbon modified by ammonia solution through heat treatment. J. Chem. Eng. (2014). https://doi.org/10.1016/j.cej.2014.06.004

    Article  Google Scholar 

  8. M. Sevilla, G.A. Ferrero, A.B. Fuertes, Chapter 11: CO2 storage on nanoporous carbons. J. Nanoporous Mater. Gas Storage (2019). https://doi.org/10.1007/978-981-13-3504-4_11

    Article  Google Scholar 

  9. E. García-Díez, A. Castro-Muñiz, J.I. Paredes, M.M. Maroto-Valer, F. Suarez-García, S. García, CO2 capture by novel hierarchical activated ordered micro-mesoporous carbons derived from low value coal tar products. Microporous Mesoporous Mater. (2021). https://doi.org/10.1016/j.micromeso.2021.110986

    Article  Google Scholar 

  10. Z. Shen, Y. Song, C. Yin, X. Luo, Y. Wang, X. Li, Construction of hierarchically porous 3D graphene-like carbon material by B, N co-doping for enhanced CO2 capture. Microporous Mesoporous Mater. (2021). https://doi.org/10.1016/j.micromeso.2021.111158

    Article  Google Scholar 

  11. X. Liu, S. Wang, C. Sun, H. Liu, L. Stevens, P.K. Dwomoh, C. Snape, Synthesis of functionalized 3D microporous carbon foams for selective CO2 capture. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.125459

    Article  PubMed  PubMed Central  Google Scholar 

  12. T. Khandaker, M.S. Hossain, P.K. Dhar, M. Rahman, M. Hossain, M.B. Ahmed, Efficacies of carbon-based adsorbents for carbon dioxide capture. Process (2020). https://doi.org/10.3390/pr8060654

    Article  Google Scholar 

  13. A.A. Dabbawala, I. Ismail, B.V. Vaithilingam, K. Polychronopoulou, G. Singaravel, S. Morin, M. Berthod, Y. Al Wahedi, Synthesis of hierarchical porous Zeolite-Y for enhanced CO2 capture. Microporous Mesoporous Mater. (2020). https://doi.org/10.1016/j.micromeso.2020.110261

    Article  Google Scholar 

  14. E. Davarpanah, M. Armandi, S. Hernandez, D. Fino, R. Arletti, S. Bensaid, M. Piumetti, CO2 capture on natural zeolite clinoptilolite: effect of temperature and role of the adsorption sites. J. Environ. Manage. (2020). https://doi.org/10.1016/j.jenvman.2020.111229

    Article  PubMed  Google Scholar 

  15. G. Avci, I. Erucar, S. Keskin, Do new MOFs perform better for CO2 capture and H2 purification? Computational screening of the updated MOF database. ACS Appl. Mater. Interfaces. (2020). https://doi.org/10.1021/acsami.0c12330

    Article  PubMed  PubMed Central  Google Scholar 

  16. O. Boujibar, A. Souikny, F. Ghamouss, O. Achak, M. Dahbi, T. Chafik, CO2 capture using N-containing nanoporous activated carbon obtained from argan fruit shells. J. Environ. Chem. Eng. (2018). https://doi.org/10.1016/j.jece.2018.03.005

    Article  Google Scholar 

  17. A.E. Ogungbenro, D.V. Quang, K.A. Al-Ali, L.F. Vega, M.R.M. Abu-Zahra, Physical synthesis and characterization of activated carbon from date seeds for CO2 capture. J. Environ. Chem. Eng. (2018). https://doi.org/10.1016/j.jece.2018.06.030

    Article  Google Scholar 

  18. F. Hussin, M. Kheireddine Aroua, R. Yusoff, Adsorption of CO2 on palm shell based activated carbon modified by deep eutectic solvent: breakthrough adsorption study. J. Environ. Chem. Eng. (2021). https://doi.org/10.1016/j.jece.2021.105333

    Article  Google Scholar 

  19. H. Wang, C. Chen, Y. Chen, H. Wan, L. Dong, G. Guan, Construction of ultramicropore-enriched N-doped carbons for CO2 capture: Self-decomposition of polyethyleneimine-based precursor to promote pore formation and surface polarity. J. Environ. Chem. Eng. (2021). https://doi.org/10.1016/j.jece.2021.105046

    Article  PubMed  PubMed Central  Google Scholar 

  20. C.F. Martín, M.G. Plaza, J.J. Pis, F. Rubiera, C. Pevida, T.A. Centeno, On the limits of CO2 capture capacity of carbons. Sep. Purif. Technol. (2010). https://doi.org/10.1016/j.seppur.2010.06.009

    Article  Google Scholar 

  21. N. Querejeta, M.V. Gil, C. Pevida, T.A. Centeno, Standing out the key role of ultramicroporosity to tailor biomass-derived carbons for CO2 capture. J. CO2 Util. (2018). https://doi.org/10.1016/j.jcou.2018.04.016

    Article  Google Scholar 

  22. B. Zhu, Q. Xu, X. Bao, H. Yin, Y. Qin, X.C. Shen, Highly selective CO2 capture and photoreduction over porous carbon nitride foams/LDH monolith. Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2021.132284

    Article  PubMed  PubMed Central  Google Scholar 

  23. S.E. Zanco, M. Ambrosetti, G. Groppi, E. Tronconi, M. Mazzotti, Heat transfer intensification with packed open-cell foams in TSA processes for CO2 capture. Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2021.131000

    Article  Google Scholar 

  24. Y. Zhang, J. Sun, J. Tan, C.H. Ma, S. Luo, W. Li, S. Liu, Hierarchical porous graphene oxide/carbon foam nanocomposites derived from larch for enhanced CO2 capture and energy storage performance. J. CO2 Util. (2021). https://doi.org/10.1016/j.jcou.2021.101666

    Article  Google Scholar 

  25. M. Zbair, S. Ojala, H. Khallok, K. Ainassaari, Z. El Assal, Z. Hatim, R.L. Keiski, M. Bensitel, R. Brahmi, Structured carbon foam derived from waste biomass: application to endocrine disruptor adsorption. J. Environ. Sci. Pollut. Res. (2019). https://doi.org/10.1007/s11356-019-06302-8

    Article  Google Scholar 

  26. M. Moussa, N. Bader, N. Querejeta, I. Durán, C. Pevida, A. Ouederni, Toward sustainable hydrogen storage and carbon dioxide capture in post-combustion conditions. J. Environ. Chem. Eng. (2017). https://doi.org/10.1016/j.jece.2017.03.003

    Article  Google Scholar 

  27. R. Narasimman, S. Vijayan, K. Prabhakaran, Carbon foam with microporous cell wall and strut for CO2 capture. RSC Adv. 4, 578–582 (2014)

    Article  CAS  Google Scholar 

  28. M.J.G. De Araùjo, J. Villarroel-Rocha, V.C. De Souza, K. Sapag, S.B.C. Pergher, Carbon foams from sucrose employing different metallic nitrates as blowing agents: application in CO2 capture. J. Anal. Appl. Pyrol. (2019). https://doi.org/10.1016/j.jaap.2019.05.016

    Article  Google Scholar 

  29. W. Djeridi, A. Ouederni, A.D. Wiersum, P. Liewllyn, L. Mir, High pressure methane adsorption on microporous carbon monoliths prepared by olive stones. J. Mater. Lett. (2013). https://doi.org/10.1016/j.matlet.2013.03.044

    Article  Google Scholar 

  30. R. Narasimman, K. Prabhakaran, Preparation of carbon foams by thermo-foaming of activated carbon powder dispersions in an aqueous sucrose resin. Carbon (2012). https://doi.org/10.1016/j.carbon.2012.08.010

    Article  Google Scholar 

  31. N. Wibowo, L. Setyadhi, D. Wibowo, J. Setiawan, S. Ismadji, Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: influence of surface chemistry on adsorption. J. Hazard. Mater. (2007). https://doi.org/10.1016/j.jhazmat.2006.12.011

    Article  PubMed  Google Scholar 

  32. M.G. Plaza, I. Durán, F. Rubiera, C. Pevida, CO2 adsorbent pellets produced from pine sawdust: effect of coal tar pitch addition. Appl. Energy (2015). https://doi.org/10.1016/j.apenergy.2014.12.090

    Article  Google Scholar 

  33. P. Ammendola, F. Raganati, R. Chirone, F. Miccio, Fixed bed adsorption as affected by thermodynamics and kinetics: Yellow tuff for CO2 capture. Powder Technol. (2020). https://doi.org/10.1016/j.powtec.2020.06.075

    Article  Google Scholar 

  34. A.A. Adelodun, J.C. Ngila, D.-G. Kim, Y.-M. Jo, Isotherm, thermodynamic and kinetic studies of selective CO2 adsorption on chemically modified carbon surfaces. Aerosol Air Qual. Res. (2016). https://doi.org/10.4209/aaqr.2016.01.0014

    Article  Google Scholar 

  35. D. Tiwari, C. Goel, H. Bhunia, P.K. Bajpai, Dynamic CO2 capture by carbon adsorbents: kinetics, isotherm and thermodynamic studies. Sep. Purif. Technol. (2017). https://doi.org/10.1016/j.seppur.2017.03.014

    Article  Google Scholar 

  36. S. Loganathan, M. Tikmani, S. Edubilli, A. Mishra, A.K. Ghoshal, CO2 adsorption kinetics on mesoporous silica under wide range of pressure and temperature. Chem. Eng. J. (2014). https://doi.org/10.1016/j.cej.2014.06.091

    Article  Google Scholar 

  37. L. Ai, C. Zhang, L. Meng, Adsorption of methyl orange from aqueous solution on hydrothermal synthesized Mg-Al layered double hydroxide. J. Chem. Eng. Data. (2011). https://doi.org/10.1021/je200743u

    Article  Google Scholar 

  38. A. Shokrollahi, A. Alizadeh, Z. Malekhosseini, M. Ranjbar, Removal of bromocresol green from aqueous solution via adsorption on Ziziphus nummularia as a new, natural, and low-cost adsorbent: kinetic and thermodynamic study of removal process. J. Chem. Eng. Data (2011). https://doi.org/10.1021/je200311y

    Article  Google Scholar 

  39. Y.S. Ho, G. McKay, Sorption of dye from aqueous solution by peat. Chem. Eng. J. (1998). https://doi.org/10.1016/S0923-0467(98)00076-

    Article  Google Scholar 

  40. J.M. Borah, J. Sarma, S. Mahiuddin, adsorption comparison at the alumina/water interface: 3,4-dihydroxybenzoic acid vs. catechol. Colloids Surf. A (2011). https://doi.org/10.1016/j.colsurfa.2011.07.024

    Article  Google Scholar 

  41. W.J.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution. J Sanitary Eng. Div. (1963). https://doi.org/10.1061/JSEDAI.0000430

    Article  Google Scholar 

  42. B.H. Hameed, I.A.W. Tan, A.L. Ahmad, Adsorption Isotherm, Kinetic Modeling and Mechanism of 2, 4, 6-trichlorophenol on Coconut husk-based Activated Carbon. Chem. Eng. J. (2008). https://doi.org/10.1016/j.cej.2008.01.028

    Article  Google Scholar 

  43. R.I. Yousef, B. Eswedb, A.H. Muhtasebc, Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: kinetics, mechanism, and thermodynamics studies. Chem. Eng. J. (2011). https://doi.org/10.1016/j.cej.2011.05.012

    Article  Google Scholar 

  44. G. Mckay, S.J. Allen, Surface mass transfer processes using peat as an adsorbent for dyestuffs. Can. J. Chem. Eng. (1980). https://doi.org/10.1002/cjce.5450580

    Article  Google Scholar 

  45. K. Prabhakaran, P.K. Singh, N.M. Gokhale, S.C. Sharma, Processing of sucrose to low density carbon foams. J. Mater. Sci. (2007). https://doi.org/10.1007/s10853-006-0481-1

    Article  Google Scholar 

  46. N. Querejeta, M.G. Plaza, F. Rubiera, C. Pevida, Water vapor adsorption on biomass based carbons under post-combustion CO2 capture conditions: effect of post-treatment. Materials (2016). https://doi.org/10.3390/ma9050359

    Article  PubMed  PubMed Central  Google Scholar 

  47. J. Garrido, A. Linares-Solano, J.M. Martin-Martinez, M. Molina-Sabio, F. Rodriguez-Reinoso, R. Torregrosa, Use of nitrogen vs. carbon dioxide in the characterization of activated carbons. Langmuir (1987). https://doi.org/10.1021/la00073a013

    Article  Google Scholar 

  48. E. Rodriguez, R. Garcia, Low-cost hierarchical micro/macroporous carbon foams as efficient sorbents for CO2 capture. Fuel Process. Technol. (2017). https://doi.org/10.3390/pr7090592

    Article  Google Scholar 

  49. D. Zabiegaj, M. Gaccia, M.E. Gasco, F. Ravera, J. Narciso, Synthesis of carbon monoliths with a tailored hierarchical pore structure for selective CO2 capture. J. CO2 Utilization (2018). https://doi.org/10.1016/j.jcou.2018.04.020

    Article  Google Scholar 

  50. M.G. Plaza, A.S. González, J.J. Pis, F. Rubiera, C. Pevida, Production of microporous biochars by single-step oxidation: effect of activation conditions on CO2 capture. Appl. Energy (2014). https://doi.org/10.1016/j.apenergy.2013.09.058

    Article  Google Scholar 

  51. M. Sevilla, A.B. Fuertes, Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ. Sci. (2011). https://doi.org/10.1039/C0EE00784F

    Article  Google Scholar 

  52. V. Presser, J. McDonough, S.H. Yeon, Y. Gogotsi, Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energy Environ. (2011). https://doi.org/10.1039/C1EE01176F

    Article  Google Scholar 

  53. N. Balahmar, A.S. Al-Jumialy, R. Mokaya, Biomass to porous carbon in one step: directly activated biomass for high performance CO2 storage. J. Mater. Chem. A (2017). https://doi.org/10.1039/c7ta01722g

    Article  Google Scholar 

  54. D. Li, Y. Chen, M. Zheng, H. Zhao, Y. Zhao, Z. Sun, Hierarchically structured porous nitrogen-doped carbon for highly selective CO2 capture. J. ACS Sustain. Chem. Eng. (2015). https://doi.org/10.1021/acssuschemeng.5b01230

    Article  Google Scholar 

  55. R.A. Fiuza, R.M. de Jesus Neto, L.B. Correia, H.M.C. Andrade, Preparation of granular activated carbons from yellow mombin fruit stones for CO2 adsorption. J. Environ. Manage (2015). https://doi.org/10.1016/j.jenvman.2015.06.053

    Article  PubMed  Google Scholar 

  56. H.Y. Zhao, Y. Cao, Q. Lineberry, W.P. Pan, Evaluation of CO2 adsorption capacity of solid sorbents. J. Therm. Anal. Calorim (2011). https://doi.org/10.1007/s10973-011-1481-1

    Article  Google Scholar 

  57. A. Sayari, R.S. Guerrero, Modeling adsorption of CO2 on amine-functionalized mesoporous silica. 2: kinetics and breakthrough curves. Chem. Eng. J. (2010). https://doi.org/10.1016/j.cej.2010.04.042

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the PrEM Group at INCAR-CSIC, Oviedo, Spain for the access to the techniques and analysis support, and the Research Laboratory: Process Engineering and Industrial Systems (LR11ES54) from National School of Engineers of Gabes (Tunisia) for the financial support.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meriem Moussa or Thouraya Bohli.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moussa, M., Bohli, T., Pevida, C. et al. Olive stones based carbon foam: synthesis, characterization and application on post-combustion CO2 adsorption. J Porous Mater 29, 1097–1112 (2022). https://doi.org/10.1007/s10934-022-01240-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01240-2

Keywords

Navigation