Skip to main content
Log in

Preparation of Bletilla striata polysaccharide composite aerogel and its application in adsorption of dyes and oils from water

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In this study, Bletilla striata polysaccharide/powdered activated carbon (BSP/PAC) aerogels were prepared by freeze-drying of homogeneous mixture of BSP and PAC. Solvent replacement method, mechanical analysis, scanning electron microscope and Fourier transform infrared spectroscopy were used to characterize the morphology and performance of the aerogels. Dyes including anionic methylene orange (MO), cationic methylene blue (MB) and oil red O (ORO) and oils including trichloromethane, n-hexane, edible oil and engine oil in aqueous solution were used to study the adsorption properties of aerogels. The results showed that the prepared aerogels had porous structure and good adsorption capacity. The results of dye adsorption showed that BSP/PAC aerogel had stronger adsorption capacity for MB compared with MO and ORO, and the adsorption data for MB were more consistent with the Langmuir model with maximum experimental capacity of 166.295 mg·g− 1, indicating the efficiency in absorption. In addition, according to the results of adsorption kinetics, the adsorption of MB on BSP/PAC aerogels could be described by a quasi-second-order model. The results of oil adsorption showed that BSP/PAC had the highest adsorption rate of edible oil compared with the other oils, which was nearly 52 times of its own weight. Overall, BSP/PAC is a porous material with three-dimensional structure, which can effectively remove MB dye and oil from water, and may have potential application prospects in sewage purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Dwivedi, S. Mishra, R.D. Tripathi, Ganga water pollution: A potential health threat to inhabitants of Ganga basin. Environ. Int. 117, 327–338 (2018). https://doi.org/10.1016/j.envint.2018.05.015

    Article  CAS  PubMed  Google Scholar 

  2. S. Zhang, B. Wang, S. Wang, W. Hu, X. Wen, P. Shao, J. Fan, Influence of air pollution on human comfort in five typical Chinese cities. Environ. Res. 195, 110318 (2021). https://doi.org/10.1016/j.envres.2020.110318

    Article  CAS  PubMed  Google Scholar 

  3. G. Grande, P.L.S. Ljungman, K. Eneroth, T. Bellander, D. Rizzuto, Association Between Cardiovascular Disease and Long-term Exposure to Air Pollution With the Risk of Dementia. JAMA Neurol. 77(7), 801–809 (2020). https://doi.org/10.1001/jamaneurol.2019.4914

    Article  PubMed  PubMed Central  Google Scholar 

  4. N. Yuan, X. Gong, W. Sun, C. Yu, Advanced applications of Zr-based MOFs in the removal of water pollutants. Chemosphere 267, 128863 (2021). https://doi.org/10.1016/j.chemosphere.2020.128863

    Article  CAS  PubMed  Google Scholar 

  5. L. Li, J. Zhang, A. Wang, Removal of Organic Pollutants from Water Using Superwetting Materials. Chem. Rec 18(2), 118–136 (2018). https://doi.org/10.1002/tcr.201700029

    Article  CAS  PubMed  Google Scholar 

  6. Y. Ono, K. Sekiguchi, K. Sankoda, S. Nii, N. Namiki, Improved ultrasonic degradation of hydrophilic and hydrophobic aldehydes in water by combined use of atomization and UV irradiation onto the mist surface. Ultrason. Sonochem 60, 104766 (2020). https://doi.org/10.1016/j.ultsonch.2019.104766

    Article  CAS  PubMed  Google Scholar 

  7. U. Baig, M. Faizan, M. Sajid, Multifunctional membranes with super-wetting characteristics for oil-water separation and removal of hazardous environmental pollutants from water: A review. Adv. Colloid Interface Sci. 285, 102276 (2020). https://doi.org/10.1016/j.cis.2020.102276

    Article  CAS  PubMed  Google Scholar 

  8. GdaC. Cunha, N.C. Pinho, I.A. Alves Silva, L. Santos Silva, J.A. Santana Costa, Removal of heavy crude oil from water surfaces using a magnetic inorganic-organic hybrid powder and membrane system. J. Environ. Manage. (2019). https://doi.org/10.1016/j.jenvman.2019.06.050

    Article  Google Scholar 

  9. S. Zereshki, P. Daraei, A. Shokri, Application of edible paraffin oil for cationic dye removal from water using emulsion liquid membrane. J. Hazard. Mater. 356, 1–8 (2018). https://doi.org/10.1016/j.jhazmat.2018.05.037

    Article  CAS  PubMed  Google Scholar 

  10. X. Zhang, B. Gao, A.E. Creamer, C. Cao, Y. Li, Adsorption of VOCs onto engineered carbon materials: A review. J. Hazard. Mater. 338, 102–123 (2017). https://doi.org/10.1016/j.jhazmat.2017.05.013

    Article  CAS  PubMed  Google Scholar 

  11. Y. Zhou, J. Lu, Y. Zhou, Y. Liu, Recent advances for dyes removal using novel adsorbents: A review. Environ Pollut 252, 352–365 (2019). https://doi.org/10.1016/j.envpol.2019.05.072

    Article  CAS  PubMed  Google Scholar 

  12. J. Feng, B.-L. Su, H. Xia, S. Zhao, C. Gao, L. Wang, O. Ogbeide, J. Feng, T. Hasan, Printed aerogels: chemistry, processing, and applications. Chem. Soc. Rev. 50(6), 3842–3888 (2021). https://doi.org/10.1039/c9cs00757a

    Article  CAS  PubMed  Google Scholar 

  13. M. Peydayesh, M.K. Suter, S. Bolisetty, S. Boulos, S. Handschin, L. Nyström, R. Mezzenga, Amyloid Fibrils Aerogel for Sustainable Removal of Organic Contaminants from Water. Adv. Mater. 32(12), e1907932 (2020). https://doi.org/10.1002/adma.201907932

    Article  CAS  PubMed  Google Scholar 

  14. S. Zhao, W.J. Malfait, N. Guerrero-Alburquerque, M.M. Koebel, G. Nyström, Biopolymer Aerogels and Foams: Chemistry, Properties, and Applications. Angew Chem. Int. Ed. Engl. 57(26), 7580–7608 (2018). https://doi.org/10.1002/anie.201709014

    Article  CAS  PubMed  Google Scholar 

  15. P. Arabkhani, A. Asfaram, Development of a novel three-dimensional magnetic polymer aerogel as an efficient adsorbent for malachite green removal. J. Hazard. Mater. 384, 121394 (2020). https://doi.org/10.1016/j.jhazmat.2019.121394

    Article  CAS  PubMed  Google Scholar 

  16. H. Bidgoli, Y. Mortazavi, A.A. Khodadadi, A functionalized nano-structured cellulosic sorbent aerogel for oil spill cleanup: Synthesis and characterization. J. Hazard. Mater. 366, 229–239 (2019). https://doi.org/10.1016/j.jhazmat.2018.11.084

    Article  CAS  PubMed  Google Scholar 

  17. K.C. Lai, B.Y.Z. Hiew, L.Y. Lee, S. Gan, S. Thangalazhy-Gopakumar, W.S. Chiu, P.S. Khiew, Ice-templated graphene oxide/chitosan aerogel as an effective adsorbent for sequestration of metanil yellow dye. Bioresour Technol. 274, 134–144 (2019). https://doi.org/10.1016/j.biortech.2018.11.048

    Article  CAS  PubMed  Google Scholar 

  18. L. Yi, J. Yang, X. Fang, Y. Xia, L. Zhao, H. Wu, S. Guo, Facile fabrication of wood-inspired aerogel from chitosan for efficient removal of oil from Water. J. Hazard. Mater. 385, 121507 (2020). https://doi.org/10.1016/j.jhazmat.2019.121507

    Article  CAS  PubMed  Google Scholar 

  19. K.M. Lompe, D. Menard, B. Barbeau, Performance of biological magnetic powdered activated carbon for drinking water purification. Water Res. 96, 42–51 (2016). https://doi.org/10.1016/j.watres.2016.03.040

    Article  CAS  PubMed  Google Scholar 

  20. K.-Y. Park, Y.-J. Yu, S.-J. Yun, J.-H. Kweon, Natural organic matter removal from algal-rich water and disinfection by-products formation potential reduction by powdered activated carbon adsorption. J. Environ. Manage. 235, 310–318 (2019). https://doi.org/10.1016/j.jenvman.2019.01.080

    Article  CAS  PubMed  Google Scholar 

  21. J. Hu, A. Aarts, R. Shang, B. Heijman, L. Rietveld, Integrating powdered activated carbon into wastewater tertiary filter for micro-pollutant removal. J. Environ. Manage. 177, 45–52 (2016). https://doi.org/10.1016/j.jenvman.2016.04.003

    Article  CAS  PubMed  Google Scholar 

  22. K. Li, M. Zhou, L. Liang, L. Jiang, W. Wang, Ultrahigh-surface-area activated carbon aerogels derived from glucose for high-performance organic pollutants adsorption. J. Colloid Interface Sci. 546, 333–343 (2019). https://doi.org/10.1016/j.jcis.2019.03.076

    Article  CAS  PubMed  Google Scholar 

  23. L. Jiang, Y. Zhang, M. Zhou, L. Liang, K. Li, Oxidation of Rhodamine B by persulfate activated with porous carbon aerogel through a non-radical mechanism. J. Hazard. Mater. 358, 53–61 (2018). https://doi.org/10.1016/j.jhazmat.2018.06.048

    Article  CAS  PubMed  Google Scholar 

  24. X. Ji, J. Feng, C. Li, S. Han, M. Sun, J. Feng, H. Sun, J. Fan, W. Guo, Application of biocharcoal aerogel sorbent for solid-phase microextraction of polycyclic aromatic hydrocarbons in water samples. J. Sep. Sci. 43(23), 4364–4373 (2020). https://doi.org/10.1002/jssc.202000910

    Article  CAS  PubMed  Google Scholar 

  25. E. Partlan, Y. Ren, O.G. Apul, D.A. Ladner, T. Karanfil, Adsorption kinetics of synthetic organic contaminants onto superfine powdered activated carbon. Chemosphere 253, 126628 (2020). https://doi.org/10.1016/j.chemosphere.2020.126628

    Article  CAS  PubMed  Google Scholar 

  26. S. Yang, Q. Zhang, Z. Lei, W. Wen, X. Huang, R. Chen, Comparing powdered and granular activated carbon addition on membrane fouling control through evaluating the impacts on mixed liquor and cake layer properties in anaerobic membrane bioreactors. Bioresour Technol. 294, 122137 (2019). https://doi.org/10.1016/j.biortech.2019.122137

    Article  CAS  PubMed  Google Scholar 

  27. N. Delgado, A. Capparelli, A. Navarro, D. Marino, Pharmaceutical emerging pollutants removal from water using powdered activated carbon: Study of kinetics and adsorption equilibrium. J. Environ. Manage. 236, 301–308 (2019). https://doi.org/10.1016/j.jenvman.2019.01.116

    Article  CAS  PubMed  Google Scholar 

  28. Z. Chen, L. Cheng, Y. He, X. Wei, Extraction, characterization, utilization as wound dressing and drug delivery of Bletilla striata polysaccharide: A review. Int. J. Biol. Macromol. 120, 2076–2085 (2018). https://doi.org/10.1016/j.ijbiomac.2018.09.028

    Article  CAS  PubMed  Google Scholar 

  29. Z. Chen, Y. Zhao, M. Zhang, X. Yang, P. Yue, D. Tang, X. Wei, Structural characterization and antioxidant activity of a new polysaccharide from Bletilla striata fibrous roots. Carbohydr. Polym. 227, 115362 (2020). https://doi.org/10.1016/j.carbpol.2019.115362

    Article  CAS  PubMed  Google Scholar 

  30. Y. Wang, S. Han, R. Li, B. Cui, X. Ma, X. Qi, Q. Hou, M. Lin, J. Bai, S. Li, Structural characterization and immunological activity of polysaccharides from the tuber of Bletilla striata. Int. J. Biol. Macromol. 122, 628–635 (2019). https://doi.org/10.1016/j.ijbiomac.2018.10.201

    Article  CAS  PubMed  Google Scholar 

  31. X. He, X. Wang, J. Fang, Z. Zhao, L. Huang, H. Guo, X. Zheng, Bletilla striata: Medicinal uses, phytochemistry and pharmacological activities. J. Ethnopharmacol. 195, 20–38 (2017). https://doi.org/10.1016/j.jep.2016.11.026

    Article  CAS  PubMed  Google Scholar 

  32. L. Wang, Y. Wu, J. Li, H. Qiao, L. Di, Rheological and mucoadhesive properties of polysaccharide from Bletilla striata with potential use in pharmaceutics as bio-adhesive excipient. Int. J. Biol. Macromol. 120, 529–536 (2018). https://doi.org/10.1016/j.ijbiomac.2018.08.127

    Article  CAS  PubMed  Google Scholar 

  33. Q. Zhang, C. Qi, H. Wang, X. Xiao, Y. Zhuang, S. Gu, Y. Zhou, L. Wang, H. Yang, W. Xu, Biocompatible and degradable Bletilla striata polysaccharide hemostasis sponges constructed from natural medicinal herb Bletilla striata. Carbohydr. Polym. 226, 115304 (2019). https://doi.org/10.1016/j.carbpol.2019.115304

    Article  CAS  PubMed  Google Scholar 

  34. J. Chen, L. Lv, Y. Li, X. Ren, H. Luo, Y. Gao, H. Yan, Y. Li, Y. Qu, L. Yang, X. Li, R. Zeng, Preparation and evaluation of Bletilla striata polysaccharide/graphene oxide composite hemostatic sponge. Int. J. Biol. Macromol. 130, 827–835 (2019). https://doi.org/10.1016/j.ijbiomac.2019.02.137

    Article  CAS  PubMed  Google Scholar 

  35. S. Zhang, F. He, X. Fang, X. Zhao, Y. Liu, G. Yu, Y. Zhou, Y. Feng, J. Li, Enhancing soil aggregation and acetamiprid adsorption by ecofriendly polysaccharides hydrogel based on Ca(2+)- amphiphilic sodium alginate. J. Environ. Sci. (China) 113, 55–63 (2022). https://doi.org/10.1016/j.jes.2021.05.042

    Article  Google Scholar 

  36. M. Wang, Y. Li, M. Cui, M. Li, W. Xu, L. Li, Y. Sun, B. Chen, K. Chen, Y. Zhang, Barium alginate as a skeleton coating graphene oxide and bentonite-derived composites: Excellent adsorbent based on predictive design for the enhanced adsorption of methylene blue. J. Colloid Interface Sci. 611, 629–643 (2022). https://doi.org/10.1016/j.jcis.2021.12.115

    Article  CAS  PubMed  Google Scholar 

  37. V. Vatanpour, B. Yavuzturk Gul, B. Zeytuncu, S. Korkut, G. Ilyasoglu, T. Turken, M. Badawi, I. Koyuncu, M.R. Saeb, Polysaccharides in fabrication of membranes: A review. Carbohydr. Polym. 281, 119041 (2022). https://doi.org/10.1016/j.carbpol.2021.119041

    Article  CAS  PubMed  Google Scholar 

  38. Y. Wang, Y. Su, W. Wang, Y. Fang, S.B. Riffat, F. Jiang, The advances of polysaccharide-based aerogels: Preparation and potential application. Carbohydr. Polym. 226, 115242 (2019). https://doi.org/10.1016/j.carbpol.2019.115242

    Article  CAS  PubMed  Google Scholar 

  39. H. Gu, X. Zhou, S. Lyu, D. Pan, M. Dong, S. Wu, T. Ding, X. Wei, I. Seok, S. Wei, Z. Guo, Magnetic nanocellulose-magnetite aerogel for easy oil adsorption. J. Colloid Interface Sci. 560, 849–856 (2020). https://doi.org/10.1016/j.jcis.2019.10.084

    Article  CAS  PubMed  Google Scholar 

  40. B. He, Y. Zhang, B. Li, Y. Chen, L. Zhu, Preparation and hydrophobic modification of carboxymethyl chitosan aerogels and their application as an oil adsorption material. J. Environ. Chem. Eng. (2021). https://doi.org/10.1016/j.jece.2021.106333

    Article  PubMed  PubMed Central  Google Scholar 

  41. L. Zhang, Y. Liao, Y.C. Wang, S. Zhang, W. Yang, X. Pan, Z.L. Wang, Cellulose II Aerogel-Based Triboelectric Nanogenerator. Adv. Funct. Mater. 30(28), 2001763 (2020). https://doi.org/10.1002/adfm.202001763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. H. Bi, Z. Yin, X. Cao, X. Xie, C. Tan, X. Huang, B. Chen, F. Chen, Q. Yang, X. Bu, X. Lu, L. Sun, H. Zhang, Carbon fiber aerogel made from raw cotton: a novel, efficient and recyclable sorbent for oils and organic solvents. Adv. Mater. 25(41), 5916–5921 (2013). https://doi.org/10.1002/adma.201302435

    Article  CAS  PubMed  Google Scholar 

  43. J. Feng, B.L. Su, H. Xia, S. Zhao, C. Gao, L. Wang, O. Ogbeide, J. Feng, T. Hasan, Printed aerogels: chemistry, processing, and applications. Chem Soc Rev 50(6), 3842-3888 (2021) https://doi.org/10.1039/c9cs00757a

  44. P. Franco, S. Cardea, A. Tabernero, I. De Marco, Porous aerogels and adsorption of pollutants from water and air: a review. Molecules (2021). https://doi.org/10.3390/molecules26154440

    Article  PubMed  PubMed Central  Google Scholar 

  45. S. Karamikamkar, H.E. Naguib, C.B. Park, Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: A review. Adv. Colloid Interface Sci. 276, 102101 (2020). https://doi.org/10.1016/j.cis.2020.102101

    Article  CAS  PubMed  Google Scholar 

  46. M. Jiang, H. Li, L. Zhou, R. Xing, J. Zhang, Hierarchically Porous Graphene/ZIF-8 Hybrid Aerogel: Preparation, CO2 Uptake Capacity, and Mechanical Property. ACS Appl. Mater. Interfaces 10(1), 827–834 (2018). https://doi.org/10.1021/acsami.7b17728

    Article  CAS  PubMed  Google Scholar 

  47. S.P. Druzian, N.P. Zanatta, R.K. Borchardt, L.N. Cortes, A.F.M. Streit, E.C. Severo, J.O. Goncalves, E.L. Foletto, E.C. Lima, G.L. Dotto, Chitin-psyllium based aerogel for the efficient removal of crystal violet from aqueous solutions. Int. J. Biol. Macromol. 179, 366–376 (2021). https://doi.org/10.1016/j.ijbiomac.2021.02.179

    Article  CAS  PubMed  Google Scholar 

  48. P. Zeng, J. Li, Y. Chen, L. Zhang, The structures and biological functions of polysaccharides from traditional Chinese herbs. Prog Mol. Biol. Transl Sci. 163, 423–444 (2019). https://doi.org/10.1016/bs.pmbts.2019.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. W. Xu, Y. Li, H. Wang, Q. Du, M. Li, Y. Sun, M. Cui, L. Li, Study on the Adsorption Performance of Casein/Graphene Oxide Aerogel for Methylene Blue. ACS Omega 6(43), 29243–29253 (2021). https://doi.org/10.1021/acsomega.1c04938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. A.M. Herrera-Gonzalez, M. Caldera-Villalobos, A.A. Pelaez-Cid, Adsorption of textile dyes using an activated carbon and crosslinked polyvinyl phosphonic acid composite. J. Environ. Manage. 234, 237–244 (2019). https://doi.org/10.1016/j.jenvman.2019.01.012

    Article  CAS  PubMed  Google Scholar 

  51. J. Wang, X. Guo, Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere 258, 127279 (2020). https://doi.org/10.1016/j.chemosphere.2020.127279

    Article  CAS  PubMed  Google Scholar 

  52. D. Guerra, I. Mello, R. Resende, R. Silva, Application as absorbents of natural and functionalized Brazilian bentonite in Pb2 + adsorption: Equilibrium, kinetic, pH, and thermodynamic effects. Water Resour. Ind. 4(4), 32–50 (2013)

    Article  Google Scholar 

  53. J. Wang, X. Guo, Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater. 390, 122156 (2020). https://doi.org/10.1016/j.jhazmat.2020.122156

    Article  CAS  PubMed  Google Scholar 

  54. S. Ye, W. Jin, Q. Huang, Y. Hu, Y. Li, B. Li, KGM-based magnetic carbon aerogels matrix for the uptake of methylene blue and methyl orange. Int. J. Biol. Macromol. 92, 1169–1174 (2016). https://doi.org/10.1016/j.ijbiomac.2016.07.106

    Article  CAS  PubMed  Google Scholar 

  55. X. Zhou, Q. Fu, H. Liu, H. Gu, Z. Guo, Solvent-free nanoalumina loaded nanocellulose aerogel for efficient oil and organic solvent adsorption. J. Colloid Interface Sci. 581, 299–306 (2021). https://doi.org/10.1016/j.jcis.2020.07.099

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the technical and experimental support from the Public Platform of Medical Research Center, Academy of Chinese Medical Science, Zhejiang Chinese Medical University.

Funding

This work was supported by the Zhejiang Provincial public welfare research project [Grant number LGF22E030007]; Zhejiang Medical Science and Technology Program [Grant number 2020RC085]; Zhejiang Traditional Chinese Medicine Scientific Research Program [Grant number 2021ZQ024, 2020ZQ013]; Research Project of Zhejiang Education Department [Grant number Y202045160]; Zhejiang Natural Science Foundation [Grant number LQ20B070005]; National Innovation and Entrepreneurship Training Program for College Students [Grant number 202110344008]; Zhejiang University Students Science and Technology Innovation project for College Students and Xinmiao talent project [Grant number 2021R410036].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingqi Zhu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ru, X., Zhao, K., Hu, Z. et al. Preparation of Bletilla striata polysaccharide composite aerogel and its application in adsorption of dyes and oils from water. J Porous Mater 29, 991–1000 (2022). https://doi.org/10.1007/s10934-022-01223-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01223-3

Keywords

Navigation