Skip to main content

Advertisement

Log in

Self-supporting porous high-entropy MAX electrode for highly active electrocatalyst H2 evolution in alkali solution

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In this study, a low cost and high efficient porous high-entropy V2Snx(FeCoNi)1.2−xC (x = 0.4 ~ 0.8) MAX electrode (PHEM) has been fabricated through powder metallurgy method. The phase constitutes, morphology, and elements distribution are characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectrometer. The hydrogen evolution performance of the materials was investigated by cyclic voltammetry curves, linear polarization curves, and electrochemical impedance spectrum. The electrochemical results reveal that the porous high-entropy MAX electrode exhibits excellent performance on hydrogen evolution. In 6 M KOH solution, the optimized electrode of V2Sn0.6(FeCoNi)0.6C provides overpotentials of 284 mV at 20 mA cm−2, and onset potential and Tafel slope are − 0.26 V (vs RHE) and 37.9 mV dec−1 at room temperature, respectively. Furthermore, porous high-entropy V2Sn0.6(FeCoNi)0.6C MAX electrode exhibits excellent chemical stability in alkaline solution for 13 h. This work is expected to be applied in the fabrication of other porous high-entropy MAX and offers a new route to high performance electrocatalyst for a low cost and simple method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C. Steven, M. Arun, Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012). https://doi.org/10.1038/nature11475

    Article  CAS  Google Scholar 

  2. B.S. Thapa, B. Thapa, Green hydrogen as a future multi-disciplinary research at Kathmandu university. J. Phys.: Conf. Ser. 1608, 12020–12029 (2020). https://doi.org/10.1088/1742-6596/1608/1/012020

    Article  CAS  Google Scholar 

  3. L. Yu, T. Lei, B. Nan, Y. Jiang et al., Characteristics of a sintered porous Ni–Cu alloy cathode for hydrogen production in a potassium hydroxide solution. Energy 97, 498–505 (2016). https://doi.org/10.1016/j.energy.2015.12.138

    Article  CAS  Google Scholar 

  4. G. Carlos, F. Juan et al., General strategy for the synthesis of transition metal phosphide films for electrocatalytic hydrogen and oxygen evolution. ACS Appl. Mater. Inter. 8, 12798–12803 (2016). https://doi.org/10.1021/acsami.6b02352

    Article  CAS  Google Scholar 

  5. M. Fu, Q. Zhang, Y. Sun, G. Ning et al., Ni–Fe nanocubes embedded with Pt nanoparticles for hydrogen and oxygen evolution reactions. Int. J. Hydrog. Energy 45, 20832–20842 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.170

    Article  CAS  Google Scholar 

  6. Z. Pu, M. Wang, Z. Kou, I.S. Amiinu et al., Mo2C quantum dot embedded chitosan-derived nitrogen-doped carbon for efficient hydrogen evolution in a broad pH range. Chem. Commun. 52, 12753–12756 (2016). https://doi.org/10.1039/c6cc06267a

    Article  CAS  Google Scholar 

  7. N.U.A. Babar, K.S. Joya, Spray-coated thin-film Ni-oxide nanoflakes as single electrocatalysts for oxygen evolution and hydrogen generation from water splitting. ACS Omega 5, 10641–10650 (2020). https://doi.org/10.1021/acsomega.9b02960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. J. Li, Z. Yang, Y. Lin et al., Self-supported Molybdenum doping Ni3S2 nanoneedles as efficient bifunctional catalysts for overall water splitting. New J. Chem. 44, 8578–8586 (2020). https://doi.org/10.1039/D0NJ00534G

    Article  CAS  Google Scholar 

  9. P. Ramírez, J. López et al., Strategies to break linear scaling relationships. Nat. Catal. 2, 971–976 (2019). https://doi.org/10.1038/s41929-019-0376-6

    Article  Google Scholar 

  10. I. Mccue, E. Benn, B. Gaskey et al., Dealloying and dealloyed materials. Annu. Rev. Mater. Res. 46, 263–286 (2016). https://doi.org/10.1146/annurev-matsci-070115-031739

    Article  CAS  Google Scholar 

  11. G. Zhang, K. Ming, J. Kang et al., High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 279, 19–23 (2018). https://doi.org/10.1016/j.electacta.2018.05.035

    Article  CAS  Google Scholar 

  12. J.K. Pedersen, T.A. Batchelor, D. Yan et al., Surface electro-catalysis on high-entropy alloys. Curr. Opin. Electrochem. 26, 100651 (2021). https://doi.org/10.1016/j.coelec.2020.100651

    Article  CAS  Google Scholar 

  13. R. Yao, Y. Zhou, H. Shi et al., Nanoporous surface high-entropy alloys as highly efficient multisite electrocatalysts for nonacidic hydrogen evolution reaction. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202009613

    Article  PubMed Central  Google Scholar 

  14. H. Liu, C. Xi, J. Xin et al., Free-standing nanoporous NiMnFeMo alloy: an efficient non-precious metal electrocatalyst for water splitting. Chem. Eng. J. 404, 126530 (2021). https://doi.org/10.1016/j.cej.2020.126530

    Article  CAS  Google Scholar 

  15. Z. Jia, T. Yang, L. Sun et al., A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution. Adv. Mater. 32, 2000385 (2020). https://doi.org/10.1002/adma.202000385

    Article  CAS  Google Scholar 

  16. Z. Sun, Progress in research and development on MAX phases: a family of layered ternary compounds. Int. Mater. Rev. 56, 143–166 (2011). https://doi.org/10.1179/1743280410Y.0000000001

    Article  CAS  Google Scholar 

  17. Y. Li, J. Lu, M. Li, K. Chang, X. Zhang, Y. Zhang et al., Multielemental single–atom-thick A layers in nanolaminated V2(Sn, A)C (A= Fe Co, Ni, Mn) for tailoring magnetic properties. PANS 117, 820–825 (2020). https://doi.org/10.1073/pnas.1916256117

    Article  CAS  Google Scholar 

  18. P. Wang, Z. Pu, Y. Li, L. Wu, S. Mu, Iron-doped nickel phosphide nanosheet arrays: an efficient bifunctional electrocatalyst for water splitting. ACS Appl. Mater. Inter. 9, 26001–26007 (2017). https://doi.org/10.1021/acsami.7b06305

    Article  CAS  Google Scholar 

  19. X.D. Li, J.S. Yang, X.D. Feng et al., Electrochemical performance of porous Ni–Cr–Mo–Cu alloys for hydrogen evolution reactions in alkali solution. Mater. Res. Express 7, 95505–95514 (2020). https://doi.org/10.1088/2053-1591/abb562

    Article  CAS  Google Scholar 

  20. L. Yu, T. Lei, B. Nan, Y. Jiang, Y. He, C.T. Liu, Characteristics of a sintered porous Ni–Cu alloy cathode for hydrogen production in a potassium hydroxide solution. Energy 97, 498–505 (2016). https://doi.org/10.1016/j.energy.2015.12.138

    Article  CAS  Google Scholar 

  21. L. Yu, Y. Dang, J. Zeng, J. He, Y. Dou, Self-grown NiCuOx hybrids on a porous NiCuC substrate as an HER cathode in alkaline solution. Appl. Surf. Sci. 515, 146117 (2020). https://doi.org/10.1016/j.apsusc.2020.146117

    Article  CAS  Google Scholar 

  22. P. Eklund, M. Beckers, U. Jansson, H. Högberg, L. Hultman, The Mn+ 1AXn phases: materials science and thin-film processing. Thin Solid Films 518, 1851–1878 (2010). https://doi.org/10.1016/j.tsf.2009.07.184

    Article  CAS  Google Scholar 

  23. J. Yang, C. Liao, J. Wang, Effects of the Al content on pore structures of porous Ti3AlC2 ceramics by reactive synthesis. Ceram. Int. 40, 4643–4648 (2014). https://doi.org/10.1016/j.ceramint.2013.09.004

    Article  CAS  Google Scholar 

  24. X.H. Wang, Y.C. Zhou, Microstructure and properties of Ti3AlC2 prepared by the solid-liquid reaction synthesis and simultaneous in-situ hot pressing process. Acta Mater. 50, 3143–3151 (2002). https://doi.org/10.1016/S1359-6454(02)00117-9

    Article  Google Scholar 

  25. H. Fei, J. Dong, M.J. Arellano-Jiménez, G. Ye, K.N. Dong, E.L.G. Samuel, Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 6, 8668 (2015). https://doi.org/10.1038/ncomms9668

    Article  CAS  PubMed  Google Scholar 

  26. J. Luo, J.H. Im, M.T. Mayer, M. Schreier, M.K. Nazeeruddin, N.G. Park, Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 345, 1593–1596 (2014). https://doi.org/10.1126/science.1258307

    Article  CAS  PubMed  Google Scholar 

  27. Z. Zhu, H. Yin, C.T. He, M. Al-Mamun, P. Liu, L. Jiang, Ultrathin transition metal dichalcogenide/3d metal hydroxide hybridized nanosheets to enhance hydrogen evolution activity. Adv. Mater. 30, 1801171 (2018). https://doi.org/10.1002/adma.201801171

    Article  CAS  Google Scholar 

  28. Y.C. Hu, Y.Z. Wang, R. Su, C.R. Cao, F. Li, C.W. Sun, A highly efficient and self-stabilizing metallic-glass catalyst for electrochemical hydrogen generation. Adv. Mater. 28, 10293 (2016). https://doi.org/10.1002/adma.201603880

    Article  CAS  PubMed  Google Scholar 

  29. Q. Lu, G.S. Hutchings, W. Yu et al., Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution. Nat. Commun. (2015). https://doi.org/10.1038/ncomms7567

    Article  PubMed  PubMed Central  Google Scholar 

  30. Y. Qu, H. Medina, S.W. Wang, Y.C. Wang, C.W. Chen, T.Y. Su et al., Wafer scale phase-engineered 1T- and 2H-MoSe2/Mo core-shell 3D-hierarchical nanostructures toward efficient electrocatalytic hydrogen evolution reaction. Adv. Mater. 28, 9831–9838 (2016). https://doi.org/10.1002/adma.201602697

    Article  CAS  PubMed  Google Scholar 

  31. C. Gonzdlez-Buch, I. Herraiz-Cardona, E. Ortega, J. Garcia-Anton, V. Perez-Herranz, Synthesis and characterization of macroporous Ni, Co and Ni-Co electrocatalytic deposits for hydrogen evolution reaction in alkaline media. Int. J. Hydrog. Energy 38, 10157–10169 (2013). https://doi.org/10.1016/j.ijhydene.2013.06.016

    Article  CAS  Google Scholar 

  32. S. Anantharaj, S. Noda, Appropriate use of electrochemical impedance spectroscopy in water splitting electrocatalysis. ChemElectroChem 7, 2298–2307 (2020). https://doi.org/10.1002/celc.202000515

    Article  CAS  Google Scholar 

  33. S. Xing, Z. Jia, Y. Jing et al., Metallic glasses: compelling rejuvenated catalytic performance in metallic glasses (Adv. Mater. 45/2018). Adv. Mater. 30, 1780342 (2017). https://doi.org/10.1002/adma.201870342

    Article  Google Scholar 

  34. I. Herraiz-Cardona, E. Ortega, L. Vázquez-Gómez, V. Pérez-Herranz et al., Double-template fabrication of three-dimensional porous nickel electrodes for hydrogen evolution reaction. Int. J. Hydrog. Energy 37, 2147–2156 (2012). https://doi.org/10.1016/j.ijhydene.2011.09.155

    Article  CAS  Google Scholar 

  35. S. Anantharaj, H. Sugime, B. Chen, N. Akagi et al., Achieving increased electrochemical accessibility and lowered OER activation energy for Co2+ sites with a simple anion pre-oxidation. J. Phys. Chem. C 124, 9673–9684 (2020). https://doi.org/10.1021/acs.jpcc.0c00178

    Article  CAS  Google Scholar 

  36. G.F. Mclean, T. Niet, S. Prince-Richard, An assessment of alkaline fuel cell technology. Int. J. Hydrog. Energy 27, 507–526 (2002). https://doi.org/10.1016/S0360-3199(01)00181-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Natural Science Foundation of China (51704221) and Outstanding youth fund of Wuhan Polytechnic University (2018J05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xide Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Fan, Y., Liu, Y. et al. Self-supporting porous high-entropy MAX electrode for highly active electrocatalyst H2 evolution in alkali solution. J Porous Mater 29, 693–704 (2022). https://doi.org/10.1007/s10934-022-01205-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01205-5

Keywords

Navigation