Skip to main content
Log in

Acid treatment to adjust zeolite hydrophobicity for olefin hydration reaction

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The olefin hydration reaction was an acid-catalyzed reaction. In this paper, the influences of acid treatments on the structure and Contact angle of HZSM-5 zeolite were investigated. The structure of the samples was characterized using XRD, FTIR, N2 adsorption–desorption, XPS, TG, Contact angle etc. The results showed that HCl acid treatment could remove Al from the structure, decrease relative crystallinity, and significantly increase specific surface area of the zeolite samples. On the other hand, Acid treatment could reduce the silanol groups on the catalyst surface, which could led the increase zeolite of Contact angle and hydrophobicity. As a result, the HCl-HZSM-5-4 catalyst produced high catalytic activity (7.69% conversion) at 130 °C after 4 h in cyclohexene hydration reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Corma, P. Esteve, A. Martinez, Solvent effects during the oxidation of olefins and alcohols with hydrogen peroxide on Ti-beta catalyst: the influence of the hydrophilicity-hydrophobicity of the zeolite. J. Catal. 161, 11–19 (2015). https://doi.org/10.1006/jcat.1996.0157

    Article  Google Scholar 

  2. M.G. Ahunbay, Monte Carlo simulation of water adsorption in hydrophobic MFI zeolites with hydrophilic sites. Langmuir 27, 4986–4993 (2011). https://doi.org/10.1021/la200685c

    Article  CAS  PubMed  Google Scholar 

  3. F. Cakicioglu-Ozkan, S. Ulku, The effect of HCl treatment on water vapor adsorption characteristics of clinoptilolite rich natural zeolite. Microporous Mesoporous Mater. 77, 47–53 (2005). https://doi.org/10.1016/j.micromeso.2004.08.013

    Article  CAS  Google Scholar 

  4. L. Bonaccorsia, P. Bruzzanitib, L. Calabreseb, E. Proverbio, Organosilanes functionalization of alumino-silica zeolites for water adsorption applications. Microporous Mesoporous Mater. 234, 113–119 (2016). https://doi.org/10.1016/j.micromeso.2016.07.019

    Article  CAS  Google Scholar 

  5. M. Takeuchi, T. Kimura, M. Hidaka, T. Kimura, M. Hidaka, D. Rakhmawaty, M. Anpo, Photocatalytic oxidation of acetaldehyde with oxygen on TiO2/ZSM-5 photocatalysts: effect of hydrophobicity of zeolites. J. Catal. 246, 235–240 (2007). https://doi.org/10.1016/j.jcat.2006.12.010

    Article  CAS  Google Scholar 

  6. Y. Kuwahara, J. Aoyama, K. Miyakubo, T. Eguchi, T. Kamegawa, K. Mori, H. Yamashita, TiO2 photocatalyst for degradation of organic compounds in water and air supported on highly hydrophobic FAU zeolite: structural, sorptive, and photocatalytic studies. J. Catal. 285, 223–234 (2012). https://doi.org/10.1016/j.jcat.2011.09.031

    Article  CAS  Google Scholar 

  7. C. Wang, L. Cao, J. Huang, Influences of acid and heat treatments on the structure and water vapor adsorption property of natural zeolite. Surf. Interface Anal. 49, 1249–1255 (2017). https://doi.org/10.1002/sia.6321

    Article  CAS  Google Scholar 

  8. Y. Li, L. Lin, J. Yu, Applications of zeolites in sustainable chemistry. Chem 6, 928–949 (2017). https://doi.org/10.1016/j.chempr.2017.10.009

    Article  CAS  Google Scholar 

  9. J. Nan, S. Ran, S. Heijman, L. Rietveld, High-silica zeolites for adsorption of organic micro-pollutants in water treatment: a review. Water Res. 144, 145–161 (2018). https://doi.org/10.1016/j.watres.2018.07.017

    Article  CAS  Google Scholar 

  10. C. Wang, H. Guo, S. Leng, J. Yu, K. Feng, L. Cao, J. Huang, Regulation of hydrophilicity/hydrophobicity of aluminosilicate zeolites: a review. Crit. Rev. Solid State Mater. Sci. (2020). https://doi.org/10.1080/10408436.2020.1819198

    Article  Google Scholar 

  11. C. Wang, S. Leng, H. Guo, L. Cao, J. Huang, Acid and alkali treatments for regulation of hydrophilicity/hydrophobicity of natural zeolite. Appl. Surf. Sci. 478, 319–326 (2019). https://doi.org/10.1016/j.apsusc.2019.01.263

    Article  CAS  Google Scholar 

  12. Y. Li, J. Yu, New stories of zeolite structures: their descriptions, determinations, predictions, and evaluations. Chem. Rev. 114, 7268–7316 (2014). https://doi.org/10.1021/cr500010r

    Article  CAS  PubMed  Google Scholar 

  13. I. Hiroshi, Liquid-phase hydration process of cyclohexene with zeolites. Catal. Surv. Asia 1, 241–246 (1997). https://doi.org/10.1023/A:1019037316000

    Article  Google Scholar 

  14. Y. Tang, B. Li, N. Zhang, S. Wang, Y. Wen, P. Jin, X. Wang, Growth of ZSM-5 zeolite microparticles from crystal seeds for catalytic hydration of cyclohexene. CrystEngComm 14, 3854–3857 (2012). https://doi.org/10.1039/c2ce06646g

    Article  CAS  Google Scholar 

  15. J. Li, L. Yang, F. Li, W. Xue, Y. Wang, Hydration of cyclohexene to cyclohexanol over SO3H- functionalized imidazole ionic liquids. React. Kinet. Mech. Catal. 114, 173–183 (2015). https://doi.org/10.1007/s11144-014-0778-z

    Article  CAS  Google Scholar 

  16. M. Ravi, V.L. Sushkevich, J. Bokhoven, Towards a better understanding of Lewis acidic aluminium in zeolites. Nat. Mater. 19, 1047–1056 (2020). https://doi.org/10.1038/s41563-020-0751-3

    Article  CAS  PubMed  Google Scholar 

  17. C. Wang, S. Leng, H. Guo, J. Yu, W. Li, L. Cao, J. Huang, Quantitative arrangement of Si/Al ratio of natural zeolite using acid treatment. Appl. Surf. Sci. 498, 143874.1-143874.7 (2019). https://doi.org/10.1016/j.apsusc.2019.143874

    Article  CAS  Google Scholar 

  18. S.J. You, E.D. Park, Effects of dealumination and desilication of HZSM-5 on xylose dehydration. Microporous Mesoporous Mater. 186, 121–129 (2014). https://doi.org/10.1016/j.micromeso.2013.11.042

    Article  CAS  Google Scholar 

  19. Y. Jia, J. Wang, K. Zhang, G. Chen, Y. Yang, S. Liu, Hierarchical ZSM-5 zeolite synthesized via dry gel conversion-steam assisted crystallization process and its application in aromatization of methanol. Powder Technol. 328, 415–429 (2018). https://doi.org/10.1016/j.powtec.2018.01.022

    Article  CAS  Google Scholar 

  20. X. Lin, Y. Fan, Z. Liu, G. Shi, H. Liu, X. Bao, A novel method for enhancing on-stream stability of fluid catalytic cracking (FCC) gasoline hydro-upgrading catalyst: post-treatment of HZSM-5 zeolite by combined steaming and citric acid leaching. Catal. Today 125(3), 185–191 (2007). https://doi.org/10.1016/j.cattod.2007.02.023

    Article  CAS  Google Scholar 

  21. Y. Cheng, L.J. Wang, J.S. Li, Y.C. Yang, X.Y. Sun, Preparation and characterization of nanosized ZSM-5 zeolites in the absence of organic template. Mater. Lett. 59, 3427–3430 (2005). https://doi.org/10.1016/j.matlet.2005.06.008

    Article  CAS  Google Scholar 

  22. X. Shan, Z. Cheng, P. Yuan, Reaction kinetics and mechanism for hydration of cyclohexene over ion-exchange resin and H-ZSM-5. Chem. Eng. J. 175, 423–432 (2011). https://doi.org/10.1016/j.cej.2011.09.049

    Article  CAS  Google Scholar 

  23. Y. Garcia-Basabe, I. Rodriguez-Iznaga, L. Menorval, P. Llewellyn, G. Maurin, D. Lewis, R. Binions, A. Ruiz-Salvador, Step-wise dealumination of natural clinoptilolite: structural and physicochemical characterization. Microporous Mesoporous Mater. 135, 187–196 (2010). https://doi.org/10.1016/j.micromeso.2010.07.008

    Article  CAS  Google Scholar 

  24. J.C. Groen, L.A.A. Peffer, J.A. Moulijn, R.X. Pérez, J. Rez, On the introduction of intracrystalline mesoporosity in zeolites upon desilication in alkaline medium. Microporous Mesoporous Mater. 69, 29–34 (2004). https://doi.org/10.1016/j.micromeso.2004.01.002

    Article  CAS  Google Scholar 

  25. X. Meng, Z. Lian, X. Wang, L. Shi, N. Liu, Effect of dealumination of HZSM-5 by acid treatment on catalytic properties in non-hydrocracking of diesel. Fuel 270, 117426 (2020). https://doi.org/10.1016/j.fuel.2020.117426

    Article  CAS  Google Scholar 

  26. S. Aldugh, A. Dughaither, H. Lasa, HZSM-5 zeolites with different SiO2/Al2O3 ratios. Characterization and NH3 desorption kinetics. Ind. Eng. Chem. Res. 53, 15303–15316 (2014). https://doi.org/10.1021/ie4039532

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Focus on research and development plan in Yantai city (2018XSCC038), and the Qingchuang science and technology plan innovation team of Shandong province (2019KJC012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Tian or Wenyou Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, H., Liu, S., Han, Y. et al. Acid treatment to adjust zeolite hydrophobicity for olefin hydration reaction. J Porous Mater 29, 713–722 (2022). https://doi.org/10.1007/s10934-022-01199-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01199-0

Keywords

Navigation