Skip to main content
Log in

Study on the removal of olefins from naphtha by clay loaded with trifluoromethanesulfonic acid

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In this work, a trifluoromethanesulfonic acid (TFOH) modified clay (TFOH-Clay) was developed for the removal of trace olefins in heavy naphtha. 5%TFOH-Clay can effectively improve the reaction activity, which can increase the conversion rate from 61.12 to 87.82%. Through the results of elemental analysis, it can be found that TFOH can be loaded on the clay, the actual load capacity of 5%TFOH-Clay is 4.55%. As a result of acid analysis, the Brønsted acid of the catalyst continuously increases with the increase of TFOH, which is beneficial to improve the reaction activity. The BET results show that loading TFOH will reduce the specific surface area of the catalyst, which is negative to the progress of the reaction. In order to balance the mutual influence of the both, the optimal load of TFOH is 5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Aizeng, X. Youchun, Y. Dong, Z. Xinkuan, W. Jieguang, Development and commercial application of ultra-low pressure naphtha reforming technology with continuous catalyst regeneration. China Pet Process Pe 15, 1–8 (2013)

    Google Scholar 

  2. F. Hua, Z. Fang, T. Qiu, Application of convolutional neural networks to large-scale naphtha pyrolysis kinetic modeling. Chin. J. Chem. Eng 26, 2562–2572 (2018)

    Article  CAS  Google Scholar 

  3. K. Wang, S. Li, Modified molecular matrix model for predicting molecular composition of naphtha. Chin. J. Chem. Eng 25, 1856–1862 (2017)

    Article  Google Scholar 

  4. S. Xizhou, L. Zhiqiang, F. Liuya, S. Hao, G. Feng, S. Zhi, Extractive desulfurization from simulated sulfur-rich naphtha. China Pet Process Pe 21, 61–67 (2019)

    Google Scholar 

  5. V.L. Bhirud, Improve naphtha quality for olefins cracking. Hydrocarbon Process 86, 69 (2007)

    CAS  Google Scholar 

  6. B. Cao, Y. Liang, C. Xu, J. Gao, Effects of chemical components on stability of FCC gasoline. Pet. Sci. Technol. 26, 245–255 (2008)

    Article  CAS  Google Scholar 

  7. S. Ebrahimian, D. Iranshahi, Modeling and optimization of thermally coupled reactors of naphtha reforming and propane ammoxidation with different feed distributions. React. Kinet Mech. Catal. 129, 315–335 (2020)

    Article  CAS  Google Scholar 

  8. B. Lyu, H. Kwon, I. Moon, A novel system dynamics model for forecasting naphtha price. Korean J. Chem. Eng. 35, 1033–1044 (2018)

    Article  CAS  Google Scholar 

  9. W. Park, Naphtha as a fuel for internal combustion engines. Int. J. Automot. 22, 1119–1133 (2021)

    Article  Google Scholar 

  10. W. Park, C. Park, Y. Kim, G. Cho, Performance of naphtha in compression ignition modes using multicomponent surrogate fuel model. Int. J. Automot. 21, 843–853 (2020)

    Article  Google Scholar 

  11. D. Stratiev, A. Pavlova, R. Dinkov, K. Stanulov, Char Clay terisation of refinery naphtha streams and defining their feasible processing. Oxid. Commun. 34, 469–482 (2011)

    CAS  Google Scholar 

  12. D.H. Xia, G.Q. Zhu, C.L. Yin, Y.Z. Xiang, Y.X. Su, J.L. Qian, Characterization of thiols in presweetening and sweetened RFCC gasoline distillate. Pet. Sci. Technol. 20, 17–26 (2002)

    Article  CAS  Google Scholar 

  13. C.L. Yin, G.Q. Zhu, D.H. Xia, A study of the distribution of sulfur compounds in gasoline fraction produced in China Part 2. The distribution of sulfur compounds in full-range FCC and RFCC naphthas. Fuel Process. Technol. 79, 135–140 (2002)

    Article  CAS  Google Scholar 

  14. J. Cao, B. Shen, The influence of solvents on the liquid-phase adsorption rate of n-hexane in 5A molecular sieves. Adsorpt. Sci. Technol. 27, 777–784 (2009)

    Article  CAS  Google Scholar 

  15. S. Hodoshima, A. Motomiya, S. Wakamatsu, R. Kanai, F. Yagi, Catalytic cracking of light-naphtha over MFI-zeolite/metal-oxide composites for efficient propylene production. Res. Chem. Intermed 41, 9615–9626 (2015)

    Article  CAS  Google Scholar 

  16. M. Jafari, R. Rafiei, S. Amiri, M. Karimi, D. Iranshahi, M.R. Rahimpour, H. Mahdiyar, Combining continuous catalytic regenerative naphtha reformer with thermally coupled concept for improving the process yield. Int. J. Hydrogen Energy 38, 10327–10344 (2013)

    Article  CAS  Google Scholar 

  17. I.P. Kosachev, D.N. Borisov, S.G. Yakubova, N.A. Mironov, M.R. Yakubov, Composition of the products of thermolysis of heavy oil with the addition of light hydrocracked naphtha. Pet. Sci. Technol. 36, 1683–1689 (2018)

    Article  CAS  Google Scholar 

  18. J.H. Lee, S. Kang, Y. Kim, S. Park, New approach for kinetic modeling of catalytic cracking of paraffinic naphtha. Ind. Eng. Chem. Res 50, 4264–4279 (2011)

    Article  CAS  Google Scholar 

  19. F. Lo Coco, G. Gasparini, F. Lanuzza, G. Stani, G. Adami, Multidimensional gas chromatographic determination of paraffins, olefins and aromatics in naphthas. Ann. Chim. 96, 553–560 (2006)

    Article  CAS  Google Scholar 

  20. B. Mlynkova, E. Hajekova, M. Bajus, Copyrolysis of oils/waxes of individual and mixed polyalkenes cracking products with petroleum fraction. Fuel Process. Technol. 89, 1047–1055 (2008)

    Article  CAS  Google Scholar 

  21. M.V. Reboucas, E.C. Santos, F.S.V. Vieira, Feasibility of quality process control of a naphtha fractioning unit based on near-infrared spectroscopic prediction of physical and chemical properties of medium naphtha streams. Vib. Spectrosc. 44, 187–191 (2007)

    Article  CAS  Google Scholar 

  22. Y. Ren, G. Guo, Z. Liao, Y. Yang, J. Sun, B. Jiang, J. Wang, Y. Yang, Kinetic modeling with automatic reaction network generator, an application to naphtha steam cracking. Energy 207 (2020)

  23. S. Soltanali, S.R.S. Mohaddecy, M. Mashayekhi, M. Rashidzadeh, Catalytic upgrading of heavy naphtha to gasoline: Simultaneous operation of reforming and desulfurization in the absence of hydrogen. J. Environ. Chem. Eng 8 (2020)

  24. D. Truong Xuan, Y.-I. Lim, L. Jinsuk, W. Lee, Techno-economic analysis of petrochemical complex retrofitted with simulated moving-bed for olefins and aromatics production. Chem. Eng. Res. Des. 106, 222–241 (2016)

    Article  Google Scholar 

  25. A.Z. Varzaneh, A.H.S. Kootenaei, J. Towfighi, A. Mohamadalizadeh, Optimization and deactivation study of Fe-Ce/HZSM-5 catalyst in steam catalytic cracking of mixed ethanol/naphtha feed. J. Anal. Appl. Pyrolysis 102, 144–153 (2013)

    Article  CAS  Google Scholar 

  26. C.L. Yin, R.Y. Zhao, C.G. Liu, Hydrotreating of cracked naphtha over Ni/HZSM-5 catalyst. Energy Fuels 17, 1356–1359 (2003)

    Article  CAS  Google Scholar 

  27. F. Gode, N. Ozturk, Y. Sert, S. Bahceli, Adsorption of Cr(VI) from aqueous solutions onto raw and acid-activated resadiye and hancili clays. Spectrosc. Lett. 43, 68–78 (2010)

    Article  CAS  Google Scholar 

  28. R.Z. Rakhimov, Z.A. Kamalova, E.Y. Yermilova, Blended portland cement based on thermally clays and carbonate additives. Materialovedenie 15–20 (2017)

  29. A.G. Posternak, R.Y. Garlyauskayte, V.V. Polovinko, L.M. Yagupolskii, Y.L. Yagupolskii, New kinds of organic superacids. Bis(perfluoroalkylsulfonylimino)-trifluoromethanesulfonic acids and their trimethylsilyl esters. Org. Biomol. Chem. 7, 1642–1645 (2009)

    Article  CAS  Google Scholar 

  30. D.S. Sood, S.C. Sherman, A.V. Iretskii, J.C. Kenvin, D.A. Schiraldi, M.G. White, The formylation of toluene in trifluoromethanesulfonic acid. J. Catal. 199, 149–153 (2001)

    Article  CAS  Google Scholar 

  31. L.L. Tolstikova, I.V. Sterkhova, B.A. Shainyan, Urea and thiourea complexes with trifluoromethanesulfonic acid and its derivatives. Russ. J. Org. Chem. 50, 1247–1251 (2014)

    Article  CAS  Google Scholar 

  32. X. Pu, L. Shi, Commercial test of the catalyst for removal of trace olefins from aromatics and its mechanism. Catal. Today 212, 115–119 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naiwang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Meng, X., Shi, L. et al. Study on the removal of olefins from naphtha by clay loaded with trifluoromethanesulfonic acid. J Porous Mater 29, 493–500 (2022). https://doi.org/10.1007/s10934-021-01190-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01190-1

Keywords

Navigation