Skip to main content

Advertisement

Log in

Exploration synthesis and study of indol and pyridine based heterocycle porous organic polytriazine for highly efficient iodine capture

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Over the past few decades, porous organic polymers (POPs) materials have exhibited great application potential in volatile radioactive iodine capture field for their porosity structures and feasible functional networks. However, the iodine adsorption capacities of POPs are still needed to improve through efficient molecule structure design strategy. Herein, we report a novel nitrogen-rich porous organic polytrazine (HCPOT-In) containing pyridine and indole units was designed and synthesized by a simple one-step Lewis acid-catalyzed Friedel–Crafts reaction of 2,6-di(1H-indol-1-yl)pyridine and 2,4,6-trichloro-1,3,5-triazine. The derived HCPOT-In showed permanent porosity and good stability. Taking advantages of the strong host–guest interaction from the porosity structure, nitrogen-rich skeleton and π-conjugated network, HCPOT-In showed the excellent volatile iodine adsorption capacity up to 4.08 g g−1 (348 K, 1 bar) with high amount of per unit SBET (14.6 wt%) and also great carbon dioxide capture performance of 120 cm3 g−1 (1 bar, 273 K). We hope this report will provide a molecular structure design idea in constructing novel POPs as efficient adsorbent materials applying in environment protection field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. He, S.-Y. Zhang, X. Tang, S. Xiong, C. Ai, D. Chen, J. Tang, C. Pan, G. Yu, Exploration of 1d channels in stable and high-surface-area covalent triazine polymers for effective iodine removal. Chem. Eng. J. 371(10), 314–318 (2019)

    Article  CAS  Google Scholar 

  2. T. Geng, C. Zhang, M. Liu, C. Hu, G. Chen, Preparation of biimidazole-based porous organic polymers for ultrahigh iodine capture and formation of liquid complexes with iodide/polyiodide ions. J. Mater. Chem. A. 8(5), 2820–2826 (2020)

    Article  CAS  Google Scholar 

  3. J. Xia, L. Zhang, M. Qian, Y. Bao, J. Wang, Y. Li, Specific light-up pullulan-based nanoparticles with reduction-triggered emission and activatable photoactivity for the imaging and photodynamic killing of cancer cells. J. Colloid Interface Sci. 498(20), 170–181 (2017)

    Article  CAS  Google Scholar 

  4. M. Janeta, W. Bury, S. Szafert, Porous silsesquioxane–imine frameworks as highly efficient adsorbents for cooperative iodine capture. ACS Appl. Mater. Interfaces 10(23), 19964–19973 (2018)

    Article  CAS  Google Scholar 

  5. Z. Yan, Y. Yuan, Y. Tian, D. Zhang, G. Zhu, Highly efficient enrichment of volatile iodine by charged porous aromatic frameworks with three sorption sites. Angew. Chem. Int. Ed. 54(43), 12733–12737 (2015)

    Article  CAS  Google Scholar 

  6. X. Guo, Y. Tian, M. Zhang, Y. Li, R. Wen, X. Li, X. Li, Y. Xue, L. Ma, C. Xia et al., Mechanistic insight into hydrogen-bond-controlled crystallinity and adsorption property of covalent organic frameworks from flexible building blocks. Chem. Mater. 30(7), 2299–2308 (2018)

    Article  CAS  Google Scholar 

  7. Q.-Q. Dang, X.-M. Wang, Y.-F. Zhan, X.-M. Zhang, An azo-linked porous triptycene network as an absorbent for co2 and iodine uptake. Polym. Chem. 7(3), 643–647 (2016)

    Article  CAS  Google Scholar 

  8. M. Kyotani, S. Matsushita, T. Nagai, Y. Matsui, M. Shimomura, A. Kaito, K. Akagi, Helical carbon and graphitic films prepared from iodine-doped helical polyacetylene film using morphology-retaining carbonization. J. Am. Chem. Soc. 130(33), 10880–10881 (2008)

    Article  CAS  Google Scholar 

  9. J. Zhou, S. Hao, L. Gao, Y. Zhang, Study on adsorption performance of coal based activated carbon to radioactive iodine and stable iodine. Ann. Nucl. Energy 72(12), 237–241 (2014)

    Article  CAS  Google Scholar 

  10. Z. Li, H. Li, D. Wang, A. Suwansoontorn, G. Du, Z. Liu, M.M. Hasan, Y. Nagao, A simple and cost-effective synthesis of ionic porous organic polymers with excellent porosity for high iodine capture. Polymer 204(15), 122796 (2020)

    Article  CAS  Google Scholar 

  11. K.W. Chapman, P.J. Chupas, T.M. Nenoff, Radioactive iodine capture in silver-containing mordenites through nanoscale silver iodide formation. J. Am. Chem. Soc. 132(26), 8897–8899 (2010)

    Article  CAS  Google Scholar 

  12. N.V. Nguyen, J. Jeong, D. Shin, B.-S. Kim, J.-C. Lee, B.D. Pandey, Simultaneous recovery of gold and iodine from the waste rinse water of the semiconductor industry using activated carbon. Mater. Trans. 53(4), 760–765 (2012)

    Article  CAS  Google Scholar 

  13. D. Banerjee, X. Chen, S.S. Lobanov, A.M. Plonka, X. Chan, J.A. Daly, T. Kim, P.K. Thallapally, J.B. Parise, Iodine adsorption in metal organic frameworks in the presence of humidity. ACS Appl. Mater. Interfaces 10(13), 10622–10626 (2018)

    Article  CAS  Google Scholar 

  14. S. Xiong, X. Tang, C. Pan, L. Li, J. Tang, G. Yu, Carbazole-bearing porous organic polymers with a mulberry-like morphology for efficient iodine capture. ACS Appl. Mater. Interfaces 11(30), 27335–27342 (2019)

    Article  CAS  Google Scholar 

  15. S. Xiong, J. Tao, Y. Wang, J. Tang, C. Liu, Q. Liu, Y. Wang, G. Yu, C. Pan, Uniform poly(phosphazene-triazine) porous microspheres for highly efficient iodine removal. Chem. Commun. 54(61), 8450–8453 (2018)

    Article  CAS  Google Scholar 

  16. T. Geng, S. Ye, Z. Zhu, W. Zhang, Triazine-based conjugated microporous polymers with n, n, n[prime or minute], n[prime or minute]-tetraphenyl-1,4-phenylenediamine, 1,3,5-tris(diphenylamino)benzene and 1,3,5-tris[(3-methylphenyl)-phenylamino]benzene as the core for high iodine capture and fluorescence sensing of o-nitrophenol. J. Mater. Chem. A 6(6), 2808–2816 (2018)

    Article  CAS  Google Scholar 

  17. W. Xie, D. Cui, S.-R. Zhang, Y.-H. Xu, D.-L. Jiang, Iodine capture in porous organic polymers and metal–organic frameworks materials. Mater. Horiz. 6(8), 1571–1595 (2019)

    Article  CAS  Google Scholar 

  18. T. Geng, W. Zhang, Z. Zhu, G. Chen, L. Ma, S. Ye, Q. Niu, A covalent triazine-based framework from tetraphenylthiophene and 2,4,6-trichloro-1,3,5-triazine motifs for sensing o-nitrophenol and effective i2 uptake. Polym. Chem. 9(6), 777–784 (2018)

    Article  CAS  Google Scholar 

  19. X. Qian, Z.-Q. Zhu, H.-X. Sun, F. Ren, P. Mu, W. Liang, L. Chen, A. Li, Capture and reversible storage of volatile iodine by novel conjugated microporous polymers containing thiophene units. ACS Appl. Mater. Interfaces 8(32), 21063–21069 (2016)

    Article  CAS  Google Scholar 

  20. Y. Liao, J. Weber, B.M. Mills, Z. Ren, C.F.J. Faul, Highly efficient and reversible iodine capture in hexaphenylbenzene-based conjugated microporous polymers. Macromolecules 49(17), 6322–6333 (2016)

    Article  CAS  Google Scholar 

  21. A. Hassan, A. Alam, M. Ansari, N. Das, Hydroxy functionalized triptycene based covalent organic polymers for ultra-high radioactive iodine uptake. Chem. Eng. J. 427(8), 130950 (2022)

    Article  CAS  Google Scholar 

  22. J. Wu, F. Xu, S. Li, P. Ma, X. Zhang, Q. Liu, R. Fu, D. Wu, Porous polymers as multifunctional material platforms toward task-specific applications. Adv. Mater. 31(4), 1802922 (2019)

    Article  Google Scholar 

  23. J. Xia, J. Wang, X. Wang, M. Qian, L. Zhang, Q. Chen, Ultrasound-responsive nanoparticulate for selective amplification of chemotherapeutic potency for ablation of solid tumors. Bioconjugate Chem. 29(10), 3467–3475 (2018)

    Article  CAS  Google Scholar 

  24. C. Pei, T. Ben, S. Xu, S. Qiu, Ultrahigh iodine adsorption in porous organic frameworks. J. Mater. Chem. A 2(20), 7179–7187 (2014)

    Article  CAS  Google Scholar 

  25. F. Ren, Z. Zhu, X. Qian, W. Liang, P. Mu, H. Sun, J. Liu, A. Li, Novel thiophene-bearing conjugated microporous polymer honeycomb-like porous spheres with ultrahigh iodine uptake. Chem. Commun. 52(63), 9797–9800 (2016)

    Article  CAS  Google Scholar 

  26. X. Qian, B. Wang, Z.-Q. Zhu, H.-X. Sun, F. Ren, P. Mu, C. Ma, W.-D. Liang, A. Li, Novel n-rich porous organic polymers with extremely high uptake for capture and reversible storage of volatile iodine. J. Hazard. Mater. 338(11), 224–232 (2017)

    Article  CAS  Google Scholar 

  27. Y.L. Zhu, Y.J. Ji, D.G. Wang, Y. Zhang, H. Tang, X.R. Jia, M. Song, G.P. Yu, G.C. Kuang, Bodipy-based conjugated porous polymers for highly efficient volatile iodine capture. J. Mater. Chem. A 5(14), 6622–6629 (2017)

    Article  CAS  Google Scholar 

  28. L. Shao, Y. Sang, N. Liu, Q. Wei, F. Wang, P. Zhan, W. Luo, J. Huang, J. Chen, One-step synthesis of n-containing hyper-cross-linked polymers by two crosslinking strategies and their co2 adsorption and iodine vapor capture. Sep. Purif. Technol. 262(35), 118352 (2021)

    Article  CAS  Google Scholar 

  29. H. Ma, Q.-M. Zhang, G. Cheng, Z. Wang, Q.-S. Zong, B. Tan, C. Zhang, Heteroatom engineering of hyper-cross-linked polymers for iodine capture. ACS Appl. Polym. Mater. 3(1), 209–215 (2021)

    Article  CAS  Google Scholar 

  30. Y. Zhang, D. Yi, P. Tu, S. Yang, Q. Xie, Z. Gao, S. Wu, G. Yu, Boosting radioactive iodine capture of microporous polymers through strengthened host–guest interaction. Microporous Mesoporous Mater. 321(20), 111148 (2021)

    Article  CAS  Google Scholar 

  31. Y. Chen, H. Sun, R. Yang, T. Wang, C. Pei, Z. Xiang, Z. Zhu, W. Liang, A. Li, W. Deng, Synthesis of conjugated microporous polymer nanotubes with large surface areas as absorbents for iodine and co2 uptake. J. Mater. Chem. A 3(1), 87–91 (2015)

    Article  CAS  Google Scholar 

  32. B. Li, Y. Zhang, R. Krishna, K. Yao, Y. Han, Z. Wu, D. Ma, Z. Shi, T. Pham, B. Space et al., Introduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane. J. Am. Chem. Soc. 136(24), 8654–8660 (2014)

    Article  CAS  Google Scholar 

  33. T.-H. Niu, C.-C. Feng, C. Yao, W.-Y. Yang, Y.-H. Xu, Bisimidazole-based conjugated polymers for excellent iodine capture. ACS Appl. Polym. Mater. 3(1), 354–361 (2021)

    Article  CAS  Google Scholar 

  34. S. Gu, J. He, Y. Zhu, Z. Wang, D. Chen, G. Yu, C. Pan, J. Guan, K. Tao, Facile carbonization of microporous organic polymers into hierarchically porous carbons targeted for effective co2 uptake at low pressures. ACS Appl. Mater. Interfaces 8(28), 18383–18392 (2016)

    Article  CAS  Google Scholar 

  35. D.T. Bong, T.D. Clark, J.R. Granja, M.R. Ghadiri, Self-assembling organic nanotubes. Angew. Chem. Int. Ed. 40(6), 988–1011 (2001)

    Article  CAS  Google Scholar 

  36. M.-Q. Du, Y.-Z. Peng, Y.-C. Ma, L. Yang, Y.-L. Zhou, F.-K. Zeng, X.-K. Wang, M.-L. Song, G.-J. Chang, Selective carbon dioxide capture in antifouling indole-based microporous organic polymers. Chin. J. Polym. Sci. 38(2), 187–194 (2020)

    Article  CAS  Google Scholar 

  37. C. Wang, Y. Wang, R. Ge, X. Song, X. Xing, Q. Jiang, H. Lu, C. Hao, X. Guo, Y. Gao et al., A 3d covalent organic framework with exceptionally high iodine capture capability. Chemistry 24(3), 585–589 (2018)

    Article  CAS  Google Scholar 

  38. Y.-C. He, J. Yang, W.-Q. Kan, H.-M. Zhang, Y.-Y. Liu, J.-F. Ma, A new microporous anionic metal–organic framework as a platform for highly selective adsorption and separation of organic dyes. J. Mater. Chem. A 3(4), 1675–1681 (2015)

    Article  CAS  Google Scholar 

  39. D.K.L. Harijan, V. Chandra, T. Yoon, K.S. Kim, Radioactive iodine capture and storage from water using magnetite nanoparticles encapsulated in polypyrrole. J. Hazard. Mater. 344(21), 576–584 (2018)

    Article  CAS  Google Scholar 

  40. S. Yang, Y. Hou, S. Xiong, F. Chen, Y. Jiang, C. Pan, J. Tang, G. Yu, Processable hypercrosslinked ionic networks for effective removal of methyl orange. Sep. Purif. Technol. 258, 117986 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the Natural Science Foundation of Shandong Province (No. ZR2019PEM004), Doctoral Research Start-up Funding of Jining University (No. 2019BSZX02), Higher Educational Youth Innovation Science and Technology Program of Shandong Province (No. 2020KJC009), Young Innovative Talents Introduction & Cultivation Program for Colleges and Universities of Shandong Province: Innovative Research Team on Optoelectronic Functional Materials.

Author information

Authors and Affiliations

Authors

Contributions

KY: Writing—review & editing, Investigation, Supervision, Funding acquisition. LJ: Writing—original draft, Investigation, Conceptualization, Methodology. JZ: Formal analysis. JZ: Data curation, Software.

Corresponding author

Correspondence to Kuanyu Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 994 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, K., Jiang, L., Zhang, J. et al. Exploration synthesis and study of indol and pyridine based heterocycle porous organic polytriazine for highly efficient iodine capture. J Porous Mater 29, 405–413 (2022). https://doi.org/10.1007/s10934-021-01187-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01187-w

Keywords

Navigation