Skip to main content
Log in

Variability of molecular sieve SAPO-11 crystals: acidity, texture, and morphology

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A number of experiments on the synthesis of SAPO-11 crystals in different media (water; equimolar H2O/EtOH; low H2O/EtOH), using two methods of precursor mixing and various temperature regimes of hydrothermal treatment (HT) has been performed. It has turned out that one-stage HT at 200 °C had not provided SAPO-11 crystallization in low H2O/EtOH medium, only non-porous aluminum phosphates had been obtained, while a two-stage HT at 200 and 120 °C on the first and second stages, respectively, had allowed us to synthesize the AEL phase. Whereas equimolar water–ethanol synthesis medium has resulted in a mixture of both microporous and non-porous phases. The last one is apparently the result of the unusual properties of water–ethanol crystallization system. SAPO-11 samples which were obtained in different media have possessed “screw-like”, “tubular-like”, and “spindle-like” morphologies. SAPO-11 synthesized in the medium with the predominance of ethanol has had significant changes in physicochemical properties compared with ones obtained in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

taken from open database http://www.crystallography.net

Fig. 2

taken from open database http://www.crystallography.net

Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Code availability

Not applicable.

References

  1. C.S. Cundy, P.A. Cox, Chem. Rev. (2003). https://doi.org/10.1021/cr020060i

    Article  PubMed  Google Scholar 

  2. S.T. Wilson, B.M. Lok, C.A. Messina, T.R. Cannan, E.M. Flanigen, J. Am Soc. (1982). https://doi.org/10.1021/ja00368a062

    Article  Google Scholar 

  3. B.M. Lok, C.A. Messina, R.L. Patton, R.T. Gajek, T.R. Cannan, E.M. Flanigen, J. Am. Chem. Soc. (1984). https://doi.org/10.1021/ja00332a063

    Article  Google Scholar 

  4. R.M. Barrer, Zeolites (1981). https://doi.org/10.1016/S0144-2449(81)80001-2

    Article  Google Scholar 

  5. T. Ennaert, Van Aelst, J. Dijkmans, R. De Clercq, W. Schutyser, M. Dusselier, D. Verboekend, B.F. Sels, Chem. Soc. Rev. (2016) https://doi.org/10.1039/c5cs00859j

  6. M. Moliner, C. Martínez, A. Corma, Angew. Chemie - Int. Ed. (2015). https://doi.org/10.1002/anie.201406344

    Article  Google Scholar 

  7. N. Rangnekar, N. Mittal, B. Elyassi, Caro, M. Tsapatsis, Soc. Rev. (2015) https://doi.org/10.1039/c5cs00292c

  8. J. Coronas, Chem. Eng. J. (2010). https://doi.org/10.1016/j.cej.2009.11.006

    Article  Google Scholar 

  9. M. Dusselier, M.E. Davis, Chem. Rev. (2018). https://doi.org/10.1021/acs.chemrev.7b00738

    Article  PubMed  Google Scholar 

  10. S. Mintova, J. Grand, V. Valtchev, Comptes Rendus Chim. (2016). https://doi.org/10.1016/j.crci.2015.11.005

    Article  Google Scholar 

  11. C.S. Cundy, P.A. Cox, Micropor Mesopor Mat. (2005). https://doi.org/10.1016/j.micromeso.2005.02.016

    Article  Google Scholar 

  12. D. Karami, S. Rohani, Rev. Chem. Eng. (2007). https://doi.org/10.1515/REVCE.2007.23.1.1

    Article  Google Scholar 

  13. K.A. Sashkina, Z. Qi, W. Wu, A.B. Ayupov, A.I. Lysikov, E.V. Parkhomchuk, Micropor Mesopor Mat. (2017). https://doi.org/10.1016/j.micromeso.2017.02.060

    Article  Google Scholar 

  14. S. Li, J. Li, M. Dong, S. Fan, T. Zhao, J. Wang, W. Fan, Chem. Soc. Rev. (2019). https://doi.org/10.1039/c8cs00774h

    Article  PubMed  PubMed Central  Google Scholar 

  15. T. Sano, S. Wakabayashi, Y. Oumi, T. Uozumi, Micropor Mesopor Mat. (2001). https://doi.org/10.1016/S1387-1811(01)00285-2

    Article  Google Scholar 

  16. S. Qiu, J. Yu, G. Zhu, O. Terasaki, Y. Nozue, W. Pang, R. Xu, Micropor Mesopor Mat. (1998). https://doi.org/10.1016/S1387-1811(98)00048-1

    Article  Google Scholar 

  17. R. Roldán, M. Sánchez-Sánchez, G. Sankar, F.J. Romero-Salguero, C. Jiménez-Sanchidrián, Micropor Mesopor Mat. (2007). https://doi.org/10.1016/j.micromeso.2006.09.035

    Article  Google Scholar 

  18. X. Ren, S. Komarneni, D.M. Roy, Zeolites (1991). https://doi.org/10.1016/0144-2449(91)80408-R

    Article  Google Scholar 

  19. M. Alfonzo, J. Goldwasser, C.M. Lpez, F.J. Machado, M. Matjushin, B. Mendez, M.M.R. De Agudelo, J. Mol. Catal. A Chem. (1995). https://doi.org/10.1016/1381-1169(95)00004-6

    Article  Google Scholar 

  20. P. Liu, J. Ren, Y. Sun, J. Fuel Chem. Technol. (2008). https://doi.org/10.1016/S1872-5813(08)60035-3

    Article  Google Scholar 

  21. P. Liu, J. Ren, Y. Sun, Catal. Commun. (2008). https://doi.org/10.1016/j.catcom.2008.01.030

    Article  Google Scholar 

  22. D. Fan, P. Tian, S. Xu, D. Wang, Y. Yang, J. Li, Q. Wang, M. Yang, Z. Liu, New J. Chem. (2016). https://doi.org/10.1039/C5NJ02351C

    Article  Google Scholar 

  23. G. Liu, P. Tian, J. Li, D. Zhang, F. Zhou, Z. Liu, Micropor Mesopor Mat. (2008). https://doi.org/10.1016/J.MICROMESO.2007.07.023

    Article  Google Scholar 

  24. E. Dumitriu, A. Azzouz, V. Hulea, D. Lutic, H. Kessler, Micropor Mater. (1997). https://doi.org/10.1016/S0927-6513(96)00107-1

    Article  Google Scholar 

  25. H. Weyda, H. Lechert, Zeolites (1990). https://doi.org/10.1016/0144-2449(94)90136-8

    Article  Google Scholar 

  26. M. Razavian, R. Halladj, S. Askari, Rev. Adv. Mater. Sci. (2011)

  27. Z. Chen, W. Song, S. Zhu, W. Lai, X. Yi, W. Fang, RSC Adv. (2017). https://doi.org/10.1039/C6RA26522G

    Article  PubMed  PubMed Central  Google Scholar 

  28. Z. Chen, X. Li, Y. Xu, Y. Dong, W. Lai, W. Fang, X. Yi, Catal. Commun. (2018). https://doi.org/10.1016/j.catcom.2017.09.002

    Article  Google Scholar 

  29. Z. Chen, Y. Dong, S. Jiang, W. Song, W. Lai, X. Yi, W. Fang, J. Mater. Sci. (2017). https://doi.org/10.1007/s10853-016-0692-z

    Article  PubMed  PubMed Central  Google Scholar 

  30. M. Luo, D. Wang, Y. Fu, G. Mao, B. Wang, Eur. J. Inorg. Chem. (2018). https://doi.org/10.1002/ejic.201800393

    Article  PubMed  PubMed Central  Google Scholar 

  31. A.K. Sinha, S. Seelan, Appl. Catal. A Gen. (2004). https://doi.org/10.1016/j.apcata.2004.05.013

    Article  Google Scholar 

  32. Z. Wang, Z. Tian, G. Wen, F. Teng, Y. Xu, Z. Xu, L. Lin, React. Kinet. Catal. Lett. (2006). https://doi.org/10.1556/RKCL.88.2006.1.11

    Article  Google Scholar 

  33. Z. Liu, W. Xu, G. Yang, R. Xu, Micropor Mesopor Mat. (1998). https://doi.org/10.1016/S1387-1811(98)00105-X

    Article  Google Scholar 

  34. I.A. Tiuliukova, N.A. Rudina, A.I. Lysikov, S.V. Cherepanova, E.V. Parkhomchuk, Mater. Lett. (2018). https://doi.org/10.1016/J.MATLET.2018.05.118

    Article  Google Scholar 

  35. X.T. Xu, J.P. Zhai, I.L. Li, J.N. Tang, S.C. Ruan, Micropor Mesopor Mat. (2012). https://doi.org/10.1016/j.micromeso.2011.08.003

    Article  Google Scholar 

  36. S.H. Jhung, Y.K. Hwang, J.S. Chang, S.E. Park, Micropor Mesopor Mat. (2004). https://doi.org/10.1016/j.micromeso.2003.10.012

    Article  Google Scholar 

  37. A.A. Chernov, Modern crystallography III Crystal growth (Springer, Verlag, Berlin, Heidelberg, New York, Tokyo, 1984)

    Book  Google Scholar 

  38. P. Cubillas, M.A. Holden, M.W. Anderson, Cryst. Growth Des. (2011). https://doi.org/10.1021/cg200407h

    Article  Google Scholar 

  39. Y. Liu, Y. Lyu, X. Zhao, L. Xu, S. Mintova, Z. Yan, X. Liu, Chem. Commun. (2018). https://doi.org/10.1039/C8CC05952G

    Article  Google Scholar 

  40. J. Grand, H. Awala, S. Mintova, CrystEngComm (2016). https://doi.org/10.1039/C5CE02286J

    Article  Google Scholar 

  41. M. Niederberger, H. Cölfen, Phys. Chem. Chem. Phys. (2006). https://doi.org/10.1039/B604589H

    Article  PubMed  Google Scholar 

  42. D. Tian, W. Yan, X. Cao, J. Yu, R. Xu, Chem. Mater. (2008). https://doi.org/10.1021/cm703317c

    Article  Google Scholar 

  43. Z. Chen, S. Zhu, P. Li, X. Li, Y. Xu, Y. Dong, W. Song, X. Yi, W. Fang, CrystEngComm (2017). https://doi.org/10.1039/c7ce01132f

    Article  PubMed  PubMed Central  Google Scholar 

  44. I.V. Grenev, V.Y. Gavrilov, Micropor Mesopor Mat. (2020). https://doi.org/10.1016/j.micromeso.2019.109906

    Article  Google Scholar 

  45. G. Sastre, D.W. Lewis, C.R.A. Catlow, J. Mol. Catal. A Chem. (1997). https://doi.org/10.1016/S1381-1169(96)00498-0

    Article  Google Scholar 

  46. J.A. Martens, P.J. Grobet, P.A. Jacobs, J. Catal. (1990). https://doi.org/10.1016/0021-9517(90)90068-U

    Article  Google Scholar 

  47. L. Guo, X. Bao, Y. Fan, G. Shi, H. Liu, D. Bai, J. Catal. (2012). https://doi.org/10.1016/j.jcat.2012.07.016

    Article  Google Scholar 

  48. M. Popova, C. Minchev, V. Kanazirev, Appl. Catal. A Gen. (1998). https://doi.org/10.1016/S0926-860X(98)00003-9

    Article  Google Scholar 

  49. G.V. Echevsky, Q. Weixing, A.V. Toktarev, W. Wei, Pet. Chem. (2016). https://doi.org/10.1134/S096554411603004X

    Article  Google Scholar 

  50. J. Yang, O.V. Kikhtyanin, W. Wu, Y. Zhou, A.V. Toktarev, G.V. Echevsky, R. Zhang, Micropor Mesopor Mat. (2012). https://doi.org/10.1016/j.micromeso.2011.09.020

    Article  Google Scholar 

  51. M. Sedighi, J. Towfighi, A. Mohamadalizadeh, Powder Technol. (2014). https://doi.org/10.1016/j.powtec.2014.03.045

    Article  Google Scholar 

  52. A. Gedanken, Ultrason. Sonochem. (2004). https://doi.org/10.1016/J.ULTSONCH.2004.01.037

    Article  PubMed  Google Scholar 

  53. I.A. Shamanaeva, E.V. Parkhomchuk, Pet. Chem. (2019). https://doi.org/10.1134/S0965544119080218

    Article  Google Scholar 

  54. L. Xin, H. Sun, R. Xu, W. Yan, Sci. Rep. (2015). https://doi.org/10.1038/srep14940

    Article  PubMed  PubMed Central  Google Scholar 

  55. J. Yu, R. Xu, Chem. Soc. Rev. (2006). https://doi.org/10.1039/b505856m

    Article  PubMed  Google Scholar 

  56. M.R. Agliullin, Z.R. Khairullina, A.V. Faizullin, B.I. Kutepov, Pet. Chem. (2019). https://doi.org/10.1134/S0965544119030010

    Article  Google Scholar 

  57. A.K. Sinha, S. Sivasanker, P. Ratnasamy, Ind. Eng. Chem. Prod. Res. Dev. (1998). https://doi.org/10.1021/ie9707228

    Article  Google Scholar 

  58. G. Liu, P. Tian, Z. Liu, Chinese. J. Catal. (2012). https://doi.org/10.1016/S1872-2067(11)60325-2

    Article  Google Scholar 

  59. D. Fan, P. Tian, S. Xu, Q. Xia, X. Su, L. Zhang, Y. Zhang, Y. He, Z. Liu, J. Mater. Chem. (2012). https://doi.org/10.1039/c2jm15281a

    Article  PubMed  PubMed Central  Google Scholar 

  60. Y. Wang, S.-L. Chen, Y.-J. Jiang, Y.-Q. Cao, F. Chen, W.-K. Chang, Y.-L. Gao, RSC Adv. (2016). https://doi.org/10.1039/C6RA23048B

    Article  PubMed  PubMed Central  Google Scholar 

  61. D. Wang, P. Tian, D. Fan, M. Yang, B. Gao, Y. Qiao, C. Wang, Z. Liu, J. Colloid Interface Sci. (2015). https://doi.org/10.1016/J.JCIS.2014.12.029

    Article  PubMed  Google Scholar 

  62. W. Yan, X. Song, R. Xu, Micropor Mesopor Mat. (2009). https://doi.org/10.1016/j.micromeso.2009.03.023

    Article  Google Scholar 

  63. F. Franks, D.J.G. Ives, Q. Rev, Chem. Soc. (1966). https://doi.org/10.1039/qr9662000001

    Article  Google Scholar 

  64. A.K. Soper, L. Dougan, J. Crain, J.L. Finney, J. Phys. Chem. B (2006). https://doi.org/10.1021/jp054556q

    Article  PubMed  Google Scholar 

  65. I.S. Khattab, F. Bandarkar, M.A.A. Fakhree, A. Jouyban, Korean J. Chem. Eng. (2012). https://doi.org/10.1007/s11814-011-0239-6

    Article  Google Scholar 

  66. A. Wakisaka, K. Matsuura, J. Mol. Liq. (2006). https://doi.org/10.1016/j.molliq.2006.08.010

    Article  Google Scholar 

  67. P. Petong, R. Pottel, U. Kaatze, J. Phys. Chem. A. (2000). https://doi.org/10.1021/jp001393r

    Article  Google Scholar 

  68. N. Nishi, S. Takahashi, M. Matsumoto, A. Tanaka, K. Muraya, T. Takamuku, T. Yamaguchi, J. Phys. Chem. (2005). https://doi.org/10.1021/j100001a068

    Article  Google Scholar 

  69. S. Burikov, T. Dolenko, S. Patsaeva, Y. Starokurov, V. Yuzhakov, Mol. Phys. (2010). https://doi.org/10.1080/00268976.2010.516277

    Article  Google Scholar 

  70. M. Matsumoto, N. Nishi, T. Furusawa, M. Saita, T. Takamuku, M. Yamagami, T. Yamaguchi, Bull. Chem. Soc. Jpn. (1995)

  71. Q. Dong, C. Yu, L. Li, L. Nie, D. Li, H. Zang, Acta Part A Mol. Biomol. Spectros (2019). https://doi.org/10.1016/J.SAA.2019.117183

    Article  Google Scholar 

  72. K. Mizuno, Y. Miyashita, Y. Shindo, H. Ogawa, J. Phys. Chem. (1995). https://doi.org/10.1021/j100010a037

    Article  Google Scholar 

  73. K. Egashira, N. Nishi, J. Phys. Chem. B. (1998). https://doi.org/10.1021/jp980635

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Alekseeva N.A. (XRD patterns), Rudina N.A. (SEM images obtaining), Lysikov A.I. (TPD-NH3 measurements) and Leonova A.A. (texture measurements). This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the governmental order for Boreskov Institute of Catalysis (project AAAA-A21-121011490008-3).

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the governmental order for Boreskov Institute of Catalysis (project AAAA-A21-121011490008–3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina A. Shamanaeva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3408 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamanaeva, I.A., Parkhomchuk, E.V. Variability of molecular sieve SAPO-11 crystals: acidity, texture, and morphology. J Porous Mater 29, 481–492 (2022). https://doi.org/10.1007/s10934-021-01177-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01177-y

Keywords

Navigation