Skip to main content

Advertisement

Log in

Selective adsorption of CO2/N2 promoted by polar ligand functional groups of metal–organic frameworks

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The structure modification of metal–organic frameworks (MOFs) is a promising technique to enhance its selective adsorption of carbon dioxide at room temperatures. However, to date, little is known on the structure-property relationship of MOFs for carbon capture. In this work, the effects of chemical composition of MOFs on selective adsorption of carbon dioxide were studied systematically. A series of aluminum-based MIL-53 with similar formula units but different organic ligands, Al(OH)BDC-X [BDC = terephthalate, X = H, NH2, NO2, 2(CH3)], were prepared and employed to the selective adsorption of CO2/N2. It was found that the Al(OH)BDC-X series with various organic ligands affected the CO2 capacity significantly. The decorations of functional groups with strong polarity on the BDC links remarkably enhanced the CO2 uptakes. The experimental results were in good agreement with the equivalent adsorption heat calculations, which showed that the CO2 affinity of the ligands with polarity groups were thermodynamically more favored than those with non-polarity ones on the MOF structures. The interesting findings could provide a potential way to fabricate new metal organic frameworks with high carbon dioxide capture capacities at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Z. Zhang, Y. Zhao, Q. Gong, Z. Li, J. Li, Chem. Commun. 49, 653 (2013)

    Article  CAS  Google Scholar 

  2. Z. Shi, Y. Tao, J. Wu, C. Zhang, H. He, L. Long, Y. Lee, T. Li, Y.-B. Zhang, J. Am. Chem. Soc. 142, 2750 (2020)

    Article  CAS  PubMed  Google Scholar 

  3. A. Kumar, D.G. Madden, M. Lusi, K.J. Chen, E.A. Daniels, T. Curtin, J.J. Perry, M.J. Zaworotko, Angew. Chem. Int. Ed. 54, 14372 (2015)

    Article  CAS  Google Scholar 

  4. I. Luz, M. Soukri, M. Lail, Chem. Sci. 9, 4589 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. H. Daglar, S. Keskin, J. Phys. Chem. C 122, 17347 (2018)

    Article  CAS  Google Scholar 

  6. Z. Li, G. Xu, B. Liu et al., Energies 8, 11531 (2015)

    Article  CAS  Google Scholar 

  7. G.T. Rochelle, Science 325, 1652 (2009)

    Article  CAS  PubMed  Google Scholar 

  8. P. Murge, S. Dinda, S. Roy, Langmuir 35, 14751 (2019)

    Article  CAS  PubMed  Google Scholar 

  9. A.M. Alloush, M.M. Abdelnaby, K.E. Cordova, N.A.A. Qasem, B.A. Al-maythalony, A. Jalilov, Y. Mankour, O. Hamouz, Micro. Meso. Mater. 305, 110391 (2020)

    Article  CAS  Google Scholar 

  10. Z. Yuan, M.R. Eden, R. Gani, Ind. Eng. Chem. Res. 55, 3383 (2016)

    Article  CAS  Google Scholar 

  11. J.M. Yu, L.H. Xie, J.R. Li, Y.G. Ma, J.M. Seminario, P.B. Balbuena, Chem. Rev. 117, 9674 (2017)

    Article  CAS  PubMed  Google Scholar 

  12. J. Li, P.M. Bhatt, J. Li, M. Eddaoudi, Y. Liu, Adv. Mater. 32, 2002563 (2020)

    Article  CAS  Google Scholar 

  13. O.F. Altundal, C. Altintas, S. Keskin, J. Mater. Chem. A 8, 14609 (2020)

    Article  CAS  Google Scholar 

  14. J.R. Li, J. Sculley, H.C. Zhou, Chem. Rev. 112, 869 (2012)

    Article  CAS  PubMed  Google Scholar 

  15. R.K. Pachauri, A. Reisinger, IPCC Fourth Assessment Report (Intergovernmental Panel on Climate Change, 2007)

  16. S. Krachuamram, K. Chayakul, N. Kamonsutthipaijit, Micro. Meso. Mater. 310, 110632 (2021)

    Article  CAS  Google Scholar 

  17. K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.H. Bae, J.R. Long, Chem. Rev. 112, 724 (2012)

    Article  CAS  PubMed  Google Scholar 

  18. B. Zheng, J. Bai, J. Duan, L. Wojtas, M.J. Zaworotko, J. Am. Chem. Soc. 133, 748 (2011)

    Article  CAS  PubMed  Google Scholar 

  19. G. Sneddon, A. Greenaway, H.H.P. Yiu, Adv. Energ. Mater. 4, 1301873 (2014)

    Article  Google Scholar 

  20. J. Wang, S. Zhang, G. Cui, Chem. Soc. Rev. 45, 4307 (2016)

    Article  PubMed  Google Scholar 

  21. Y. Li, L. Li, J. Yu, Chem. 3, 928 (2017)

    Article  CAS  Google Scholar 

  22. Y. Xie, T.T. Wang, X.H. Liu et al., Nat. Commun. 4, 1960 (2013)

    Article  PubMed  Google Scholar 

  23. Z. Zhang, Y. Zhao, Q. Gong, Z. Li, J. Li. Chem. Commun. 49, 653 (2013)

    Article  CAS  Google Scholar 

  24. Z. Qiao, K. Zhang, J. Jiang, J. Mater. Chem. A 4, 2105 (2016)

    Article  CAS  Google Scholar 

  25. R. Vaidhyanathan, S.S. Iremonger, G.K.H. Shimizu, P.G. Boyd, S. Alavi, T.K. Woo, Science 330, 650 (2010)

    Article  CAS  PubMed  Google Scholar 

  26. M.J. Lashaki, S. Khiavi, A. Sayari. Chem. Soc. Rev. 48, 3320 (2019)

    Article  Google Scholar 

  27. H.R. Abid, Z.H. Rada, X. Duan, H. Sun, S. Wang, Energ. Fuel 32, 4502 (2017)

    Article  Google Scholar 

  28. H. Yin, J. Wang, Z. Xie et al., Chem. Commun. 50, 3699 (2014)

    Article  CAS  Google Scholar 

  29. G. Singh, J. Lee, A. Karakoti, R. Bahadur, J. Yi, D. Zhao et al., Chem. Soc. Rev. 49, 4360 (2020)

    Article  CAS  PubMed  Google Scholar 

  30. C.A. Trickett, A. Helal, B.A. Al-Maythalony, Z.H. Yamani, K.E. Cordova, O.M. Yaghi, Nat. Rev. Mater. 2, 17045 (2017)

    Article  CAS  Google Scholar 

  31. L. Liang, C. Liu, F. Jiang et al., Nat. Commun. 8, 1233 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  32. A.S. Munn, R.S. Pillai, S. Biswas et al., Dalton Trans. 45, 4162 (2016)

    Article  CAS  PubMed  Google Scholar 

  33. A. Vimont, A. Travert, P. Bazin et al., Chem.Commun. 43, 3291 (2007)

    Article  Google Scholar 

  34. S. Vaesen, V. Guillerm, Q. Yang et al., Chem. Commun. 49, 10082 (2013)

    Article  CAS  Google Scholar 

  35. T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Férey, Chem. Eur. J. 10, 1373 (2004)

    Article  CAS  PubMed  Google Scholar 

  36. S. Biswas, T. Ahnfeldt, N. Stock, Inorg. Chem. 50, 9518 (2011)

    Article  CAS  PubMed  Google Scholar 

  37. T. Ahnfeldt, D. Gunzelmann, T. Loiseau et al., Inorg. Chem. 48, 3057 (2009)

    Article  CAS  PubMed  Google Scholar 

  38. X. Yan, T. Xue, Y. Liu et al., New Chem. Mater. 44, 85 (2016)

    Google Scholar 

  39. C. Falaise, C. Volkringer, J. Facqueur et al., Chem. Commun. 49, 10320 (2013)

    Article  CAS  Google Scholar 

  40. W. Cao, Y. Li, L. Wang et al., J. Phys. Chem. C 115, 13829 (2011)

    Article  CAS  Google Scholar 

  41. A. Torrisi, R.G. Bell, C. Mellot-Draznieks, Micro. Meso. Mater. 168, 225 (2013)

    Article  CAS  Google Scholar 

  42. C. Serre, F. Millange, C. Thouvenot, M. Nogues, G. Marsolier, D. Louer, G. Ferey, J. Am. Chem. Soc. 124, 13519 (2002)

    Article  CAS  PubMed  Google Scholar 

  43. T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Ferey, Chem.-Eur. J. 10, 1373 (2004)

    Article  CAS  PubMed  Google Scholar 

  44. W. Wang, L. Lin, H. Qi, W. Cao et al., Chin. J. Catal. 42, 824 (2021)

    Article  Google Scholar 

  45. C. Zheng, D. Liu, Q. Yang, C. Zhong, J. Mi, Ind. Eng. Chem. Res. 48, 10479 (2009)

    Article  CAS  Google Scholar 

  46. A. Torrisi, C. Mellot-Draznieks, R.G. Bell, J. Chem. Phys. 132, 044705 (2010)

    Article  PubMed  Google Scholar 

  47. A. Torrisi, C. Mellot-Draznieks, R.G. Bell, J. Chem. Phys. 130, 194703 (2009)

    Article  PubMed  Google Scholar 

  48. M.A. Hussain, Y. Soujanya, G.N. Sastry, J. Phys. Chem. C 119, 23607 (2015)

    Article  CAS  Google Scholar 

  49. J. Kim, W.Y. Kim, W.S. Ahn, Fuel 102, 574 (2012)

    Article  CAS  Google Scholar 

  50. H. Abid, Z.H. Rada, X. Duan et al., Energ. Fuel 32, 4502 (2018)

    Article  CAS  Google Scholar 

  51. B.C.R. Camacho, R.P.P.L. Ribeiro, I. A. A. C. Esteves. et al., Sep. Purif. Technol. 141, 150 (2015)

    Article  CAS  Google Scholar 

  52. S. Couck, J.F.M. Denayer, G.V. Baron et al., J. Am. Chem. Soc. 131, 6326 (2009)

    Article  CAS  PubMed  Google Scholar 

  53. H.R. Abid, Z.H. Rada, J. Shang, S.B. Wang, Polyhedron 120, 103 (2016)

    Article  CAS  Google Scholar 

  54. R. Vaidhyanathan, S.S. Iremonger, G.K.H. Shimizu et al., Science 330, 650 (2010)

    Article  CAS  PubMed  Google Scholar 

  55. P. Deria, S. Li, H. Zhang, R.Q. Snurr, J.T. Hupp, O.K. Farha, Chem. Commun. 51, 12478 (2015)

    Article  CAS  Google Scholar 

  56. J.R. Li, J. Yu, W. Lu, L.B. Sun, J. Sculley, P.B. Balbuena, H.C. Zhou, Nat. Commun. 4, 1538 (2013)

    Article  PubMed  Google Scholar 

  57. S. Couck, E. Gobechiya, C.E.A. Kirschhock et al., ChemSusChem 5, 740 (2012)

    Article  CAS  PubMed  Google Scholar 

  58. P. Mishra, H.P. Uppara, B. Mandal, S. Gumma, Ind. Eng. Chem. Res. 53, 19747 (2014)

    Article  CAS  Google Scholar 

  59. R. Dawson, D.J. Adams, A.I. Cooper, Chem. Sci. 2, 1173 (2011)

    Article  CAS  Google Scholar 

  60. S.A. Peter, J. Sebastian, R.V. Jasra, Ind. Eng. Chem. Res. 44, 6856 (2005)

    Article  CAS  Google Scholar 

  61. M. Pera-Titus, Chem. Rev. 114, 1413 (2014)

    Article  CAS  PubMed  Google Scholar 

  62. P. Rallapalli, K.P. Prasanth, D. Patil, R.S. Somani, R.V. Jasra, H.C. Bajaj, J. Porous Mater. 18, 205 (2011)

    Article  CAS  Google Scholar 

  63. J. Möllmer, M. Lange, A. Möller, C. Patzschke, K. Stein, D. Lässig, J. Lincke, R. Gläser, H. Krautscheid, R. Staudt, J. Mater. Chem. 22, 10274 (2012)

    Article  Google Scholar 

  64. A. Torrisi, R.G. Bell, C. Mellot-Draznieks, Cryst. Growth Des. 10, 2839 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Educational Commission of Hunan Province (19B463), the Research Startup Foundation of Jishou University (No.21), and the Collaborative Innovation Center of Manganese-Zinc-Vanadium Industrial Technology (MXF202001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxiu cao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 763 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

cao, W., Yuan, B., Zhuo, O. et al. Selective adsorption of CO2/N2 promoted by polar ligand functional groups of metal–organic frameworks. J Porous Mater 29, 63–71 (2022). https://doi.org/10.1007/s10934-021-01141-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01141-w

Keywords

Navigation