Abstract
The structure modification of metal–organic frameworks (MOFs) is a promising technique to enhance its selective adsorption of carbon dioxide at room temperatures. However, to date, little is known on the structure-property relationship of MOFs for carbon capture. In this work, the effects of chemical composition of MOFs on selective adsorption of carbon dioxide were studied systematically. A series of aluminum-based MIL-53 with similar formula units but different organic ligands, Al(OH)BDC-X [BDC = terephthalate, X = H, NH2, NO2, 2(CH3)], were prepared and employed to the selective adsorption of CO2/N2. It was found that the Al(OH)BDC-X series with various organic ligands affected the CO2 capacity significantly. The decorations of functional groups with strong polarity on the BDC links remarkably enhanced the CO2 uptakes. The experimental results were in good agreement with the equivalent adsorption heat calculations, which showed that the CO2 affinity of the ligands with polarity groups were thermodynamically more favored than those with non-polarity ones on the MOF structures. The interesting findings could provide a potential way to fabricate new metal organic frameworks with high carbon dioxide capture capacities at room temperature.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Z. Zhang, Y. Zhao, Q. Gong, Z. Li, J. Li, Chem. Commun. 49, 653 (2013)
Z. Shi, Y. Tao, J. Wu, C. Zhang, H. He, L. Long, Y. Lee, T. Li, Y.-B. Zhang, J. Am. Chem. Soc. 142, 2750 (2020)
A. Kumar, D.G. Madden, M. Lusi, K.J. Chen, E.A. Daniels, T. Curtin, J.J. Perry, M.J. Zaworotko, Angew. Chem. Int. Ed. 54, 14372 (2015)
I. Luz, M. Soukri, M. Lail, Chem. Sci. 9, 4589 (2018)
H. Daglar, S. Keskin, J. Phys. Chem. C 122, 17347 (2018)
Z. Li, G. Xu, B. Liu et al., Energies 8, 11531 (2015)
G.T. Rochelle, Science 325, 1652 (2009)
P. Murge, S. Dinda, S. Roy, Langmuir 35, 14751 (2019)
A.M. Alloush, M.M. Abdelnaby, K.E. Cordova, N.A.A. Qasem, B.A. Al-maythalony, A. Jalilov, Y. Mankour, O. Hamouz, Micro. Meso. Mater. 305, 110391 (2020)
Z. Yuan, M.R. Eden, R. Gani, Ind. Eng. Chem. Res. 55, 3383 (2016)
J.M. Yu, L.H. Xie, J.R. Li, Y.G. Ma, J.M. Seminario, P.B. Balbuena, Chem. Rev. 117, 9674 (2017)
J. Li, P.M. Bhatt, J. Li, M. Eddaoudi, Y. Liu, Adv. Mater. 32, 2002563 (2020)
O.F. Altundal, C. Altintas, S. Keskin, J. Mater. Chem. A 8, 14609 (2020)
J.R. Li, J. Sculley, H.C. Zhou, Chem. Rev. 112, 869 (2012)
R.K. Pachauri, A. Reisinger, IPCC Fourth Assessment Report (Intergovernmental Panel on Climate Change, 2007)
S. Krachuamram, K. Chayakul, N. Kamonsutthipaijit, Micro. Meso. Mater. 310, 110632 (2021)
K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.H. Bae, J.R. Long, Chem. Rev. 112, 724 (2012)
B. Zheng, J. Bai, J. Duan, L. Wojtas, M.J. Zaworotko, J. Am. Chem. Soc. 133, 748 (2011)
G. Sneddon, A. Greenaway, H.H.P. Yiu, Adv. Energ. Mater. 4, 1301873 (2014)
J. Wang, S. Zhang, G. Cui, Chem. Soc. Rev. 45, 4307 (2016)
Y. Li, L. Li, J. Yu, Chem. 3, 928 (2017)
Y. Xie, T.T. Wang, X.H. Liu et al., Nat. Commun. 4, 1960 (2013)
Z. Zhang, Y. Zhao, Q. Gong, Z. Li, J. Li. Chem. Commun. 49, 653 (2013)
Z. Qiao, K. Zhang, J. Jiang, J. Mater. Chem. A 4, 2105 (2016)
R. Vaidhyanathan, S.S. Iremonger, G.K.H. Shimizu, P.G. Boyd, S. Alavi, T.K. Woo, Science 330, 650 (2010)
M.J. Lashaki, S. Khiavi, A. Sayari. Chem. Soc. Rev. 48, 3320 (2019)
H.R. Abid, Z.H. Rada, X. Duan, H. Sun, S. Wang, Energ. Fuel 32, 4502 (2017)
H. Yin, J. Wang, Z. Xie et al., Chem. Commun. 50, 3699 (2014)
G. Singh, J. Lee, A. Karakoti, R. Bahadur, J. Yi, D. Zhao et al., Chem. Soc. Rev. 49, 4360 (2020)
C.A. Trickett, A. Helal, B.A. Al-Maythalony, Z.H. Yamani, K.E. Cordova, O.M. Yaghi, Nat. Rev. Mater. 2, 17045 (2017)
L. Liang, C. Liu, F. Jiang et al., Nat. Commun. 8, 1233 (2017)
A.S. Munn, R.S. Pillai, S. Biswas et al., Dalton Trans. 45, 4162 (2016)
A. Vimont, A. Travert, P. Bazin et al., Chem.Commun. 43, 3291 (2007)
S. Vaesen, V. Guillerm, Q. Yang et al., Chem. Commun. 49, 10082 (2013)
T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Férey, Chem. Eur. J. 10, 1373 (2004)
S. Biswas, T. Ahnfeldt, N. Stock, Inorg. Chem. 50, 9518 (2011)
T. Ahnfeldt, D. Gunzelmann, T. Loiseau et al., Inorg. Chem. 48, 3057 (2009)
X. Yan, T. Xue, Y. Liu et al., New Chem. Mater. 44, 85 (2016)
C. Falaise, C. Volkringer, J. Facqueur et al., Chem. Commun. 49, 10320 (2013)
W. Cao, Y. Li, L. Wang et al., J. Phys. Chem. C 115, 13829 (2011)
A. Torrisi, R.G. Bell, C. Mellot-Draznieks, Micro. Meso. Mater. 168, 225 (2013)
C. Serre, F. Millange, C. Thouvenot, M. Nogues, G. Marsolier, D. Louer, G. Ferey, J. Am. Chem. Soc. 124, 13519 (2002)
T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Ferey, Chem.-Eur. J. 10, 1373 (2004)
W. Wang, L. Lin, H. Qi, W. Cao et al., Chin. J. Catal. 42, 824 (2021)
C. Zheng, D. Liu, Q. Yang, C. Zhong, J. Mi, Ind. Eng. Chem. Res. 48, 10479 (2009)
A. Torrisi, C. Mellot-Draznieks, R.G. Bell, J. Chem. Phys. 132, 044705 (2010)
A. Torrisi, C. Mellot-Draznieks, R.G. Bell, J. Chem. Phys. 130, 194703 (2009)
M.A. Hussain, Y. Soujanya, G.N. Sastry, J. Phys. Chem. C 119, 23607 (2015)
J. Kim, W.Y. Kim, W.S. Ahn, Fuel 102, 574 (2012)
H. Abid, Z.H. Rada, X. Duan et al., Energ. Fuel 32, 4502 (2018)
B.C.R. Camacho, R.P.P.L. Ribeiro, I. A. A. C. Esteves. et al., Sep. Purif. Technol. 141, 150 (2015)
S. Couck, J.F.M. Denayer, G.V. Baron et al., J. Am. Chem. Soc. 131, 6326 (2009)
H.R. Abid, Z.H. Rada, J. Shang, S.B. Wang, Polyhedron 120, 103 (2016)
R. Vaidhyanathan, S.S. Iremonger, G.K.H. Shimizu et al., Science 330, 650 (2010)
P. Deria, S. Li, H. Zhang, R.Q. Snurr, J.T. Hupp, O.K. Farha, Chem. Commun. 51, 12478 (2015)
J.R. Li, J. Yu, W. Lu, L.B. Sun, J. Sculley, P.B. Balbuena, H.C. Zhou, Nat. Commun. 4, 1538 (2013)
S. Couck, E. Gobechiya, C.E.A. Kirschhock et al., ChemSusChem 5, 740 (2012)
P. Mishra, H.P. Uppara, B. Mandal, S. Gumma, Ind. Eng. Chem. Res. 53, 19747 (2014)
R. Dawson, D.J. Adams, A.I. Cooper, Chem. Sci. 2, 1173 (2011)
S.A. Peter, J. Sebastian, R.V. Jasra, Ind. Eng. Chem. Res. 44, 6856 (2005)
M. Pera-Titus, Chem. Rev. 114, 1413 (2014)
P. Rallapalli, K.P. Prasanth, D. Patil, R.S. Somani, R.V. Jasra, H.C. Bajaj, J. Porous Mater. 18, 205 (2011)
J. Möllmer, M. Lange, A. Möller, C. Patzschke, K. Stein, D. Lässig, J. Lincke, R. Gläser, H. Krautscheid, R. Staudt, J. Mater. Chem. 22, 10274 (2012)
A. Torrisi, R.G. Bell, C. Mellot-Draznieks, Cryst. Growth Des. 10, 2839 (2010)
Acknowledgements
This work was supported by the Educational Commission of Hunan Province (19B463), the Research Startup Foundation of Jishou University (No.21), and the Collaborative Innovation Center of Manganese-Zinc-Vanadium Industrial Technology (MXF202001).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
cao, W., Yuan, B., Zhuo, O. et al. Selective adsorption of CO2/N2 promoted by polar ligand functional groups of metal–organic frameworks. J Porous Mater 29, 63–71 (2022). https://doi.org/10.1007/s10934-021-01141-w
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10934-021-01141-w