Skip to main content

Advertisement

Log in

Highly-dispersed Pd nanoparticles on UiO-66 in assistance of supercritical fluid and its catalytic performance of CO2 methanation

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Highly dispersed palladium nanoparticles (NPs) supported on UiO-66 as catalyst for CO2 methanation were prepared by supercritical fluid deposition (SFD). As a result, the most suitable Pd precursor salt and co-solvent are Na2PdCl4 and ethanol/DMF, respectively. The best SFD process condition to deposit the Pd precursor on UiO-66 is 40 °C, 10 MPa and 2 h. Under the above condition, 4% Pd/UiO-66 exhibits the highest activity with 53% of CO2 conversion and 95% of CH4 selectivity while the turnover frequency (TOF) value is 3669.4 h−1. The catalysts were characterized by XRD, BET, TEM, XPS, TGA, CO-DRIFTS and ICP-OES to investigate the structure–activity relationship. The 4% Pd/UiO-66 with the average size of 2.2 nm of Pd prepared in assistance of supercritical fluid behaved the similar activity as the 6%Pd/UiO-66 with average size of 9.7 nm of Pd prepared by sol–gel method. It is showed prospect of technique for reducing noble metal loading resulting from high dispersion effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.C.D.D. Silva, S. Letichevsky, L.E.P. Borges, L.G. Appel, The Ni/ZrO2 catalyst and the methanation of CO and CO2. Int. J. Hydrog. Energy 37, 8923–8928 (2012)

    Article  Google Scholar 

  2. A. Karelovic, P. Ruiz, Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts. J. Catal. 301, 141–153 (2013)

    Article  CAS  Google Scholar 

  3. Y. Shi, S. Hou, X. Qiu, B. Zhao, MOFs-based catalysts supported chemical conversion of CO2. Top. Curr. Chem. 378, 1–54 (2020)

    Article  Google Scholar 

  4. H. Muroyama, Y. Tsuda, T. Asakoshi, H. Masitah, T. Okanishi, T. Matsui, K. Eguchi, Carbon dioxide methanation over Ni catalysts supported on various metal oxides. J. Catal. 343, 178–184 (2016)

    Article  CAS  Google Scholar 

  5. J. Polanski, T. Siudyga, P. Bartczak, M. Kapkowski, W. Ambrozkiewicz, A. Nobis, R. Sitko, J. Klimontko, J. Szade, J. Lelątko, Oxide passivated Ni-supported Ru nanoparticles in silica: a new catalyst for low-temperature carbon dioxide methanation. Appl. Catal. B 206, 16–23 (2017)

    Article  CAS  Google Scholar 

  6. J. Gao, Q. Liu, F. Gu, B. Liu, F. Su, Recent advances in methanation catalysts for the production of synthetic natural gas. RSC Adv. 5, 22759–22776 (2015)

    Article  CAS  Google Scholar 

  7. H. Jiang, Q. Gao, S. Wang, Y. Chen, M. Zhang, The synergistic effect of Pd NPs and UiO-66 for enhanced activity of carbon dioxide methanation. J. CO2 Util. 31, 167–172 (2019)

    Article  CAS  Google Scholar 

  8. S.R. de Miguel, M.C. Román-Martınez, D. Cazorla-Amorós, E.L. Jablonski, O.A. Scelza, Effect of the support in Pt and PtSn catalysts used for selective hydrogenation of carvone. Catal. Today 66, 289–295 (2001)

    Article  Google Scholar 

  9. D.J. Darensbourg, M.W. Holtcamp, G.E. Struck, M.S. Zimmer, S.A. Niezgoda, P. Rainey, J.B. Robertson, J.D. Draper, J.H. Reibenspies, Catalytic activity of a series of Zn(II) phenoxides for the copolymerization of epoxides and carbon dioxide. J. Am. Chem. Soc. 121, 107–116 (2011)

    Article  Google Scholar 

  10. Y.L. Chen, C.H. Tsai, M.Y. Chen, Y.C. Lai, Green fabrication of supported platinum nanoparticles by supercritical CO2 deposition. Materials (2018). https://doi.org/10.3390/ma11122587

    Article  PubMed  PubMed Central  Google Scholar 

  11. J.J. Watkins, T.J. McCarthy, Polymer/metal nanocomposite synthesis in supercritical CO2. Chem. Mater. 7, 1991–1994 (1995)

    Article  CAS  Google Scholar 

  12. Y. Qiao, N. Said, M. Rauser, K. Yan, F. Qin, N. Theyssen, W. Leitner, Preparation of SBA-15 supported Pt/Pd bimetallic catalysts using supercritical fluid reactive deposition: how do solvent effects during material synthesis affect catalytic properties? Green Chem. 19, 977–986 (2017)

    Article  CAS  Google Scholar 

  13. M. Chatterjee, A. Chatterjee, H. Kawanami, T. Ishizaka, T. Suzuki, A. Suzuki, Rapid hydrogenation of aromatic nitro compounds in supercritical carbon dioxide: mechanistic implications via experimental and theoretical investigations. Adv. Synth. Catal. (2012). https://doi.org/10.1002/adsc.201200103

    Article  Google Scholar 

  14. Y. Zhang, H. Jiang, Y. Wang, M. Zhang, Synthesis of highly dispersed ruthenium nanoparticles supported on activated carbon via supercritical fluid deposition. Ind. Eng. Chem. Res. 53, 6380–6387 (2014)

    Article  CAS  Google Scholar 

  15. S. Wolff, M. Crone, T. Muller, M. Enders, S. Bräse, M. Türk, Preparation of supported Pt nanoparticles by supercritical fluid reactive deposition: Influence of precursor, substrate and pressure on product properties. J. Supercrit. Fluids 95, 588–596 (2014)

    Article  CAS  Google Scholar 

  16. S. Marre, A. Erriguible, A. Perdomo, F. Cansell, F. Marias, C. Aymonier, Kinetically controlled formation of supported nanoparticles in low temperature supercritical media for the development of advanced nanostructured materials. J. Phys. Chem. C 113, 5096–5104 (2009)

    Article  CAS  Google Scholar 

  17. M. Hugh, Krukonis, Supercritical fluid extraction. Principles and practices. Solvent Extr. 32, 20–25 (1994)

    Google Scholar 

  18. H. Wu, Y.S. Chua, V. Krungleviciute, M. Tyagi, P. Chen, T. Yildirim, W. Zhou, Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. J. Am. Chem. Soc. 135, 10525–10532 (2013)

    Article  CAS  Google Scholar 

  19. C. Erkey, Supercritical fluids and organometallic compounds—from recovery of trace metals to synthesis of nanostructured materials. Supercrit. Fluid Sci. Technol. 1, 161–209 (2011)

    Article  Google Scholar 

  20. M. Türk, M. Crone, G. Upper, Effect of gas pressure on the phase behaviour of organometallic compounds. J. Supercrit. Fluids 58, 1–6 (2011)

    Article  Google Scholar 

  21. H. Molavi, M. Zamani, M. Aghajanzadeh, H.K. Manjili, H. Danafar, A. Shojaei, Evaluation of UiO-66 metal organic framework as an effective sorbent for Curcumin’s overdose. Appl. Organomet. Chem. 32, e4221 (2018)

    Article  Google Scholar 

  22. P.D. Burton, T.J. Boyle, A.K. Datye, Facile, surfactant-free synthesis of Pd nanoparticles for heterogeneous catalysts. J. Catal. 280, 145–149 (2011)

    Article  CAS  Google Scholar 

  23. H. Chi, F. Zhang, Y. Lin, X. Shang, J. Chen, Z. Hao, Nanometric palladium confined in mesoporous silica as efficient catalysts for toluene oxidation at low temperature. Appl. Catal. B 111–112, 46–57 (2012)

    Google Scholar 

  24. B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011)

    Article  CAS  Google Scholar 

  25. H.L. Cossey, S.E. Guigard, E. Underwood, W.H. Stiver, S. Bhattacharya, Supercritical fluid extraction of bitumen using chemically modified carbon dioxide. J. Supercrit. Fluids 154, 104599 (2019)

    Article  CAS  Google Scholar 

  26. H. Uchida, K. Sekino, Y. Hayakawa, S. Koda, Solubility of titanium diisopropoxide bis(dipivaloylmethanate) complex in supercritical carbon dioxide and its effect on supercritical fluid deposition process. J. Supercrit. Fluids 66, 59–65 (2012)

    Article  CAS  Google Scholar 

  27. P.S. Shah, S. Husain, K.P. Johnston, B.A. Korgel, Nanocrystal arrested precipitation in supercritical carbon dioxide. J. Phys. Chem. B 105, 9433–9440 (2001)

    Article  CAS  Google Scholar 

  28. S. He, C. Li, H. Chen, D. Su, B. Zhang, X. Cao, B. Wang, M. Wei, D.G. Evans, X. Duan, A surface defect-promoted Ni nanocatalyst with simultaneously enhanced activity and stability. Chem. Mater. 25, 1040–1046 (2013). https://doi.org/10.1021/cm303517z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the National Key R&D Program of China (No. 2016YFB0600902)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Wang.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Zhao, Y., Lin, J. et al. Highly-dispersed Pd nanoparticles on UiO-66 in assistance of supercritical fluid and its catalytic performance of CO2 methanation. J Porous Mater 28, 1737–1747 (2021). https://doi.org/10.1007/s10934-021-01117-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01117-w

Keywords

Navigation