Skip to main content
Log in

Adsorption characteristics of hexadecyl ammonium with different numbers of carbon chains in montmorillonite and the structure of the prepared composites

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The dynamics and thermodynamics of adsorption of hexadecyl ammonium with different numbers of carbon chains in montmorillonite (Mt) with different layer charge density and the structure of hexadecyl ammonium/Na-Mt composites were studied in this paper. The dynamic results show that the adsorption process of hexadecyl ammonium in Na-Mt fits well with the quasi-second-order dynamics equation. The reaction rate constant k is correlated negatively with the numbers of carbon chains and the dosages of hexadecyl ammonium, but positively with the layer charge density of Na-Mt. The thermodynamic results show that the adsorption of hexadecyl ammonium in Na-Mt is a spontaneous and exothermic process, in which the entropy change ΔS first increases and then decreases. The adsorption efficiency has a positive correlation with the numbers of carbon chains and the layer charge density, but a negative correlation with the dosage of hexadecyl ammonium. Under the same dosage of hexadecyl ammonium, when the layer charge density of Na-Mt is lower, fewer carbon chains are conducive to the spontaneous reaction. On the contrary, when the layer charge density of Na-Mt is higher, a greater number of carbon chains are beneficial to the spontaneous reaction. The results of structural characterization of hexadecyl ammonium/Na-Mt show that with the increase of the numbers of carbon chains, hexadecyl ammonium dosage and Na-Mt layer charge density, the d(001) value and orderly degree of hexadecyl ammonium/Na-Mt increase, but its BET surface area, pore volume and most probable pore radius decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Zheng, A. Zaoui, Mechanical behavior in hydrated Na-montmorillonite clay. Physica A Statal Mechanics Appl. 505, 582–590 (2018). https://doi.org/10.1016/j.physa.2018.03.093

    Article  CAS  Google Scholar 

  2. G. Wang, S. Zhang, J. Wang, S. Ma, X. Lu, S. Komarneni, Synthesis of porous Al pillared montmorillonite after pre-intercalation with dodecylamine: textural and thermal properties. J. Porous Mater. 23(6), 1687–1694 (2016). https://doi.org/10.1007/s10934-016-0276-y

    Article  CAS  Google Scholar 

  3. Q. Zhang, R. Jing, S. Zhao, M. Wu, X. Liu, Y. Shao, F. Lv, A. Liu, Z. Meng, Adsorption of cationic and anionic dyes on montmorillonite in single and mixed wastewater. J. Porous Mater. 26(6), 1861–1867 (2019). https://doi.org/10.1007/s10934-019-00782-2

    Article  CAS  Google Scholar 

  4. Z. Sun, J. Xu, G. Wang, A. Song, S. Zheng, Hydrothermal fabrication of rectorite based biocomposite modified by chitosan derived carbon nanoparticles as efficient mycotoxins adsorbents. Appl. Clay Sci. 184, 105373 (2019). https://doi.org/10.1016/j.clay.2019.105373

    Article  CAS  Google Scholar 

  5. J. Yang, K. Yu, C. Liu, Chromium immobilization in soil using quaternary ammonium cations modified montmorillonite: Characterization and mechanism. J Hazard Mater 321, 73–80 (2016). https://doi.org/10.1016/j.jhazmat.2016.09.003

    Article  Google Scholar 

  6. J.L. Alves, P.D.T.V.E. Rosa, A.R. Morales, Evaluation of organic modification of montmorillonite with ionic and nonionic surfactants. Appl. Clay Sci. 150, 23–33 (2017)

  7. Siyu Peng, Taoyan Mao, XuWu. Cheng Zheng, Yuan Wei, Polyhydroxyl gemini surfactant-modified montmorillonite for efficient removal of methyl orange—ScienceDirect. Colloids Surf. A Physicochem. Eng. Asp. 578, 123602–123602 (2019). https://doi.org/10.1016/j.colsurfa.2019.123602

    Article  CAS  Google Scholar 

  8. E.E. Yalçınkaya, F.O. Pelit, İ Güney, H. Türkmen, Ionic liquid intercalated clay nanofillers for chromatographic applications. J. Porous Mater. 21(6), 1151–1158 (2014). https://doi.org/10.1007/s10934-014-9867-7

    Article  CAS  Google Scholar 

  9. Y. Li, X. Hu, X. Liu, Y. Zhang, S. Tian, Adsorption behavior of phenol by reversible surfactant-modified montmorillonite: Mechanism, thermodynamics, and regeneration. Chem. Eng. J. 334 (2018)

  10. G. Wang, X. Wang, S. Zhang, S. Ma, Y. Wang, J. Qiu, Adsorption of heavy metal and organic pollutant by organo-montmorillonites in binary-component system. J. Porous Mater. 27(5), 1515–1522 (2020). https://doi.org/10.1007/s10934-020-00927-8

    Article  CAS  Google Scholar 

  11. L.L. Pluart, J. Duchet, H. Sautereau, J.F. Gérard, Tailored interfaces in nanocomposites. Macromol. Symp. 194(1), 155–160 (2003). https://doi.org/10.1002/masy.200390077

    Article  Google Scholar 

  12. Z. Sun, C. Lian, C. Li, S. Zheng, Investigations on organo-montmorillonites modified by binary nonionic/zwitterionic surfactant mixtures for simultaneous adsorption of aflatoxin B1 and zearalenone. J. Colloid Interface Sci. 565, 11–22 (2020). https://doi.org/10.1016/j.jcis.2020.01.013

    Article  CAS  PubMed  Google Scholar 

  13. P.G. Slade, W.P. Gates, The swelling of HDTMA smectites as influenced by their preparation and layer charges. Appl. Clay Sci. 25(1–2), 93–101 (2004). https://doi.org/10.1016/j.clay.2003.07.007

    Article  CAS  Google Scholar 

  14. S.Y. Lee, W.J. Cho, P.S. Hahn, M. Lee, Y.B. Lee, K.J. Kim, Microstructural changes of reference montmorillonites by cationic surfactants. Appl. Clay Sci. 30(3–4), 174–180 (2005). https://doi.org/10.1016/j.clay.2005.03.009

    Article  CAS  Google Scholar 

  15. Y.Q. Liu, X.J. Lu, J. Qiu, Characterization of the Alkyl-Ammonium Adsorption amount in organomontmorillonite and its effect on the viscosity of organomontmorillonite Gel. Adv. Mater. Res. 158, 25–34 (2010). https://doi.org/10.4028/www.scientific.net/AMR.158.25

    Article  Google Scholar 

  16. K. Taleb, I. Pillin, Y. Grohens, S. Saidi-Besbes, Gemini surfactant modified clays: effect of surfactant loading and spacer length. Appl. Clay Sci. 161, 48–56 (2018). https://doi.org/10.1016/j.clay.2018.03.015

    Article  CAS  Google Scholar 

  17. K.J. Lin, U.S. Jeng, K.F. Lin, Adsorption and intercalation processes of ionic surfactants on montmorillonite associated with their ionic charge. Mater. Chem. Phys. 131(1–2), 120–126 (2011). https://doi.org/10.1016/j.matchemphys.2011.07.076

    Article  CAS  Google Scholar 

  18. D. Chen, J. Chen, X. Luan, H. Ji, Z. Xia, Characterization of anion–cationic surfactants modified montmorillonite and its application for the removal of methyl orange. Chem Eng J 171(3), 1150–1158 (2011). https://doi.org/10.1016/j.cej.2011.05.013

    Article  CAS  Google Scholar 

  19. J. Ma, Y. Lei, M.A. Khan, F. Wang, Y. Chu, W. Lei, M. Xia, S. Zhu, Adsorption properties, kinetics & thermodynamics of tetracycline on carboxymethyl-chitosan reformed montmorillonite. Int. J. Biol. Macromol. 124, 557–567 (2019). https://doi.org/10.1016/j.ijbiomac.2018.11.235

    Article  CAS  Google Scholar 

  20. A. Czimerova, J. Bujdak, R. Dohrmann, Traditional and novel methods for estimating the layer charge of smectites. Appl. Clay Sci. 34(1–4), 2–13 (2006). https://doi.org/10.1016/j.clay.2006.02.008

    Article  CAS  Google Scholar 

  21. Ö. AçışIı, S. Karaca, A. Gürses, Investigation of the alkyl chain lengths of surfactants on their adsorption by montmorillonite (Mt) from aqueous solutions. Appl. Clay Sci. 142, 90–99 (2016). https://doi.org/10.1016/j.clay.2016.12.009

    Article  CAS  Google Scholar 

  22. S.J. Sekewael, K. Wijaya, T. Triyono, Chemical modification of montmorillonite K10 and its catalytic activity. Asian J. Chem. 32(3), 659 (2020). https://doi.org/10.14233/ajchem.2020.22216

    Article  CAS  Google Scholar 

  23. X.J. Lu, J. Qiu, Y.Q. Liu, P. Chen, Effect of preparation parameters on the structure and property of Montmorillonite/Alkylammonium Complexes. Adv. Mater. Res. 1049 (2011)

    Article  Google Scholar 

  24. E.M. Daoudi, Y. Boughaleb, L. El Gaini, I. Meghea, M. Bakasse, Modeling of alkyl quaternary ammonium cations intercalated into montmorillonite lattice. Mater. Res. Bull. 48(5), 1824–1829 (2013)

  25. J. Qiu, D. Liu, Y. Wang, G. Chen, S. Jiang, G. Li, Y. Wang, W. Wang, P. Wu, X. Liu, G. Wang, X. Lyu, Comprehensive characterization of the structure and gel property of organo-montmorillonite: effect of layer charge density of montmorillonite and carbon chain length of alkyl ammonium. Minerals-Basel (2020). https://doi.org/10.3390/min10040378

    Article  Google Scholar 

  26. J. Qiu, K. Cui, G. Chen, Y. Wang, X. Lyu, Micro-structure and gel performance of octadecyl trimethyl ammonium chloride intercalated montmorillonite. Colloids Surf. A Physicochem. Eng. Asp. 610, 125710 (2020). https://doi.org/10.1016/j.colsurfa.2020.125710

    Article  Google Scholar 

  27. J. Qiu, S. Jiang, Y. Wang, G. Chen, D. Liu, X. Liu, G. Wang, P. Wu, X. Lyu, Crystal chemistry characteristics and dispersion performance of Ca-montmorillonite with different layer charge density. Mater. Res. Express 7(7), 075505 (2020). https://doi.org/10.1088/2053-1591/aba803

    Article  CAS  Google Scholar 

  28. L. Janovák, J. Varga, L. Kemény, I. Dékány, Swelling properties of copolymer hydrogels in the presence of montmorillonite and alkylammonium montmorillonite. Appl. Clay Sci. 43(2), 260–270 (2009). https://doi.org/10.1016/j.clay.2008.08.002

    Article  CAS  Google Scholar 

  29. M. Ghavami, Q. Zhao, S. Javadi, J.S.D. Jangam, J.B. Jasinski, N. Saraei, Change of organo bentonite interlayer microstructure induced by sorption of aromatic and petroleum hydrocarbons A combined study of laboratory characterization and molecular dynamics simulations. Colloids Surf. A 520, 324–334 (2017). https://doi.org/10.1016/j.colsurfa.2017.01.038

    Article  CAS  Google Scholar 

  30. Q. Yang, M. Gao, W. Zang, Comparative study of 2,4,6-trichlorophenol adsorption by montmorillonites functionalized with surfactants differing in the number of head group and alkyl chain. Colloids Surf. A 520, 805–816 (2017). https://doi.org/10.1016/j.colsurfa.2017.02.057

    Article  CAS  Google Scholar 

  31. P. Praus, M. Turicová, S. Študentová, M. Ritz, Study of cetyltrimethylammonium and cetylpyridinium adsorption on montmorillonite. J. Colloid Interface Sci. 304(1), 29–36 (2006). https://doi.org/10.1016/j.jcis.2006.08.038

    Article  CAS  Google Scholar 

  32. H. Zhang, J. Ma, F. Wang, Y. Chu, M. Xia, Mechanism of carboxymethyl chitosan hybrid montmorillonite and adsorption of Pb(II) and Congo red by CMC-MMT organic-inorganic hybrid composite. Int. J. Biol. Macromol. 149, 1161–1169 (2020). https://doi.org/10.1016/j.ijbiomac.2020.01.201

    Article  CAS  Google Scholar 

  33. H. Xing, Y. Liang, G. Liu, Y. Zhang, X. Liu, W. Fu, Organically treating montmorillonite with dual surfactants to modify bitumen. Constr. Build. Mater. (2020). https://doi.org/10.1016/j.conbuildmat.2020.120705

    Article  Google Scholar 

  34. H. Zhang, F. Zhao, M. Xia, F. Wang, Microscopic adsorption mechanism of montmorillonite for common ciprofloxacin emerging contaminant: molecular dynamics simulation and Multiwfn wave function analysis. Colloids Surf. A Physicochem. Eng. Asp. 614, 126186 (2021). https://doi.org/10.1016/J.COLSURFA.2021.126186

    Article  CAS  Google Scholar 

  35. T. Undabeytia, U. Shuali, S. Nir, B. Rubin, Applications of chemically modified clay minerals and clays to water purification and slow release formulations of herbicides. Minerals-Basel 11(1), 9 (2020). https://doi.org/10.3390/MIN11010009

    Article  Google Scholar 

  36. G. Tang, C. Jia, G. Wang, P. Yu, X. Jiang, Adsorption mechanism of bacteria onto a Na-montmorillonite surface with organic and inorganic calcium. bioRxiv. (2020). https://doi.org/10.1101/2020.10.08.332536

  37. W. Xiao, M. Zhan, Z. Li, Organically modifying and modeling analysis of montmorillonites. Mater. Des. 24(6), 455–462 (2003). https://doi.org/10.1016/s0261-3069(03)00064-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Nature Science Foundation of China: “Design of structure and gelling performance of Montmorillonite/Alkyl ammonium based on the adsorption properties of Alkyl ammonium on Montmorillonite” (No: 51774200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Qiu or Guangwen Cui.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 697 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, J., Wang, Y., Wu, P. et al. Adsorption characteristics of hexadecyl ammonium with different numbers of carbon chains in montmorillonite and the structure of the prepared composites. J Porous Mater 28, 1675–1687 (2021). https://doi.org/10.1007/s10934-021-01114-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01114-z

Keywords

Navigation