Skip to main content

Silica aerogels; a review of synthesis, applications and fabrication of hybrid composites

Abstract

Silica aerogels are gaining significant importance and have attracted considerable interest due to their extraordinary properties and numerous applications. Silica aerogels are highly porous with high surface area and very low density and thermal conductivity. Usually they are prepared and synthesized via sol-gel technique, which involves making a sol containing a precursor, a solvent and a catalyst. The properties possessed by the final product depend upon numerous factors such as ratio of precursor to solvent and the drying method employed. Due to the flexibility of synthesis methods and the production of aerogels with tailored properties, silica aerogels have found numerous commercial applications and are being investigated of their suitability in several areas, such biomedical and aerospace engineering. Despite having exceptional properties, silica aerogels come with drawbacks such as brittleness and low mechanical strength, which can be resolved by fabricating composites extending the potential applications. This paper reviews the synthesis of silica aerogels via sol-gel technique, and the applications where this extraordinary material has shown promising results. The different materials used for the fabrication of composites to improve and enhance the physical and chemical properties of silica aerogels are also presented.

This is a preview of subscription content, access via your institution.

Fig. 1

Reprinted with permission from Ref. [4]. Copyright Elsevier B.V. 2020

Fig. 2

Reprinted with permission from Ref. [6]. Copyright Elsevier B.V. 2019

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. O.R. Evans, W.E. Rhine, J.F. Nebo, J.R. Abeles, Jon C. 10, 233,303 (2020)

    Google Scholar 

  2. I. Smirnova, P. Gurikov, J. Supercrit. Fluids 134, 228 (2018)

    CAS  Google Scholar 

  3. J.L. Gurav, I.K. Jung, H.H. Park, E.S. Kang, D.Y. Nadargi, J. Nanomater. 2010, (2010)

  4. S. Karamikamkar, H.E. Naguib, C.B. Park, Adv. Colloid Interface Sci. 276, 102101 (2020)

    CAS  PubMed  Google Scholar 

  5. A. Soleimani Dorcheh, M.H. Abbasi, J. Mater. Process. Technol. 199, 10 (2008)

    CAS  Google Scholar 

  6. R. Garrido, J.D. Silvestre, I. Flores-Colen, M. de F. Júlio, M. Pedroso, J. Non. Cryst. Solids 516, 26 (2019)

    CAS  Google Scholar 

  7. Q. Feng, K. Chen, D. Ma, H. Lin, Z. Liu, S. Qin, Y. Luo, Colloids Surfaces A Physicochem. Eng. Asp. 539, 399 (2018)

    CAS  Google Scholar 

  8. T.A. Esquivel-Castro, M.C. Ibarra-Alonso, J. Oliva, A. Martínez-Luévanos, Mater. Sci. Eng. C 96, 915 (2019)

    CAS  Google Scholar 

  9. F.P. Soorbaghi, M. Isanejad, S. Salatin, M. Ghorbani, S. Jafari, H. Derakhshankhah, Biomed. Pharmacother. 111, 964 (2019)

    CAS  PubMed  Google Scholar 

  10. S.P. Patil, P. Shendye, B. Markert, Scr. Mater. 177, 65 (2020)

    CAS  Google Scholar 

  11. A. Venkateswara Rao, N.D. Hegde, H. Hirashima, J. Colloid Interface Sci. 305, 124 (2007)

    CAS  PubMed  Google Scholar 

  12. G. Zu, J. Shen, X. Wei, X. Ni, Z. Zhang, J. Wang, G. Liu, J. Non. Cryst. Solids 357, 2903 (2011)

    CAS  Google Scholar 

  13. M. Juzkow, Power Electron. 28, 58 (2002)

    Google Scholar 

  14. A. Lamy-Mendes, R.F. Silva, L. Durães, J. Mater. Chem. A 6, 1340 (2018)

    CAS  Google Scholar 

  15. D. Wang, F. Zhang, J. Tang, Electrochemistry 83, 84 (2015)

    CAS  Google Scholar 

  16. C.T. Wang, C.L. Wu, I.C. Chen, Y.H. Huang, Sensors Actuators, B Chem. 107, 402 (2005)

    CAS  Google Scholar 

  17. S. Bag, P.N. Trikalitis, P.J. Chupas, G.S. Armatas, M.G. Kanatzidis, Science (80-.). 317, 490 (2007)

    CAS  Google Scholar 

  18. Y. Kobayashi, T. Saito, A. Isogai, Angew. Chem. Int. Ed. Engl. 53, 10394 (2014)

    CAS  PubMed  Google Scholar 

  19. N. Mittal, R. Kumar, G. Mishra, D. Deva, A. Sharma, Adv. Mater. Interfaces 3, 1 (2016)

    Google Scholar 

  20. S. Azat, A.V. Korobeinyk, K. Moustakas, V.J. Inglezakis, J. Clean. Prod. 217, 352 (2019)

    CAS  Google Scholar 

  21. K. Ebisike, A.E. Okoronkwo, K.K. Alaneme, J. King Saud Univ. - Sci. 32, 550 (2020)

    Google Scholar 

  22. Z. Xu, L. Gan, Y. Jia, Z. Hao, M. Liu, L. Chen, J. Sol-Gel. Sci. Technol. 41, 203 (2007)

    CAS  Google Scholar 

  23. A. Venkateswara Rao, S.D. Bhagat, H. Hirashima, G.M. Pajonk, J. Colloid Interface Sci. 300, 279 (2006)

    PubMed  Google Scholar 

  24. Q. Wang, D.B. Mahadik, P. Meti, Y.D. Gong, K.Y. Lee, H.H. Park, Microporous Mesoporous Mater. 294, 109863 (2020)

    CAS  Google Scholar 

  25. S.D. Bhagat, C.S. Oh, Y.H. Kim, Y.S. Ahn, J.G. Yeo, Microporous Mesoporous Mater. 100, 350 (2007)

    CAS  Google Scholar 

  26. E.J. Zanto, S.A. Al-Muhtaseb, J.A. Ritter, Ind. Eng. Chem. Res. 41, 3151 (2002)

    CAS  Google Scholar 

  27. R. Rodríguez-Dorado, C. López-Iglesias, C.A. García-González, G. Auriemma, R.P. Aquino, and P. Del Gaudio, Molecules 24, 4 (2019)

    Google Scholar 

  28. N. Buchtová, T. Budtova, Cellulose 23, 2585 (2016)

    Google Scholar 

  29. G. Hayase, S. Nagayama, K. Nonomura, K. Kanamori, A. Maeno, H. Kaji, K. Nakanishi, J. Asian Ceram. Soc. 5, 104 (2017)

    Google Scholar 

  30. A. Baimenov, D.A. Berillo, S.G. Poulopoulos, V.J. Inglezakis, Adv. Colloid Interface Sci. 276, 102088 (2020)

    CAS  PubMed  Google Scholar 

  31. O. Okay, Polymeric Cryogels Macroporous Gels with Remarkable Properties (2014)

  32. Z.J. Rogers, S.A. Bencherif, Gels 5, 6 (2019)

    Google Scholar 

  33. H. Maleki, L. Durães, A. Portugal, J. Non. Cryst. Solids 385, 55 (2014)

    CAS  Google Scholar 

  34. I. Smirnova, P. Gurikov, Annu. Rev. Chem. Biomol. Eng. 8, 307 (2017)

    PubMed  Google Scholar 

  35. J.E. Amonette, J. Matyáš, Microporous Mesoporous Mater. 250, 100 (2017)

    CAS  Google Scholar 

  36. A. Ślosarczyk, Nanomaterials 7, (2017)

  37. K.Y. Lee, D.B. Mahadik, V.G. Parale, H.H. Park, J. Korean Ceram. Soc. 57, 1 (2020)

    Google Scholar 

  38. W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 26, 62 (1968)

    Google Scholar 

  39. Y.J. Wong, L. Zhu, W.S. Teo, Y.W. Tan, Y. Yang, C. Wang, H. Chen, J. Am. Chem. Soc. 133, 11422 (2011)

    CAS  PubMed  Google Scholar 

  40. M. Moner-Girona, A. Roig, E. Molins, J. Llibre, J. Sol-Gel. Sci. Technol. 26, 645 (2003)

    CAS  Google Scholar 

  41. H. Cai, Y. Jiang, J. Feng, S. Zhang, F. Peng, Y. Xiao, L. Li, J. Feng, Mater. Des. 191, 108640 (2020)

    CAS  Google Scholar 

  42. D.B. Mahadik, A.V. Rao, R. Kumar, S.V. Ingale, P.B. Wagh, S.C. Gupta, J. Porous Mater. 19, 87 (2012)

    CAS  Google Scholar 

  43. K.E. Parmenter, F. Milstein, J. Non. Cryst. Solids 223, 179 (1998)

    CAS  Google Scholar 

  44. C.J. Lee, G.S. Kim, S.H. Hyun, J. Mater. Sci. 37, 2237 (2002)

    CAS  Google Scholar 

  45. N. Gupta, W. Ricci, J. Mater. Process. Technol. 198, 178 (2008)

    CAS  Google Scholar 

  46. D. Ge, L. Yang, Y. Li, J.P. Zhao, J. Non. Cryst. Solids 355, 2610 (2009)

    CAS  Google Scholar 

  47. C.Q. Hong, J.C. Han, X.H. Zhang, J.C. Du, Scr. Mater. 68, 599 (2013)

    CAS  Google Scholar 

  48. R. Daoussi, S. Vessot, J. Andrieu, O. Monnier, Chem. Eng. Res. Des. 87, 899 (2009)

    CAS  Google Scholar 

  49. R.M. Asmussen, J. Matyáš, N.P. Qafoku, A.A. Kruger, J. Hazard. Mater. 379, 119364 (2019)

    CAS  PubMed  Google Scholar 

  50. P. Gerard, Aerogel Synthesis. Catalyst Preparation (CRC Press, Boca Raton, 2006)

    Google Scholar 

  51. S.D. Bhagat, Y.H. Kim, M.J. Moon, Y.S. Ahn, J.G. Yeo, Solid State Sci. 9, 628 (2007)

    CAS  Google Scholar 

  52. M.A.B. Meador, E.F. Fabrizio, F. Ilhan, A. Dass, G. Zhang, P. Vassilaras, J.C. Johnston, N. Leventis, Chem. Mater. 17, 1085 (2005)

    CAS  Google Scholar 

  53. P. Shajesh, S. Smitha, P.R. Aravind, K.G.K. Warrier, J. Sol-Gel. Sci. Technol. 50, 353 (2009)

    CAS  Google Scholar 

  54. H. Maleki, N. Hüsing, Appl. Catal. B Environ. 221, 530 (2018)

    CAS  Google Scholar 

  55. M.R. Kim, J.H. Oh, K.S. Oh, J.K. Lee, 10,197,211 (2019)

  56. A.M. Ibrahim, B.T. Chiad, W.A.A. Twej, R.A. Mohammed, Iraqi J. Sci. 60, 119 (2019)

    Google Scholar 

  57. M.Y. Nassar, I.S. Ahmed, M.A. Raya, J. Mol. Liq. 282, 251 (2019)

    CAS  Google Scholar 

  58. S.D. Bhagat, A.V. Rao, Appl. Surf. Sci. 252, 4289 (2006)

    CAS  Google Scholar 

  59. M. de F. Júlio, L.M. Ilharco, Materialia 9, 100527 (2020)

    Google Scholar 

  60. D. Du, Y. Jiang, J. Feng, L. Li, J. Feng, Vacuum 173, 109117 (2020)

    CAS  Google Scholar 

  61. S.D. Bhagat, Y.H. Kim, Y.S. Ahn, J.G. Yeo, Appl. Surf. Sci. 253, 3231 (2007)

    CAS  Google Scholar 

  62. A. Venkateswara Rao, M.M. Kulkarni, G.M. Pajonk, D.P. Amalnerkar, T. Seth, J. Sol-Gel. Sci. Technol. 27, 103 (2003)

    Google Scholar 

  63. I. De Marco, S. Miranda, S. Riemma, R. Iannone, Chem. Eng. Trans. 49, 319 (2016)

    Google Scholar 

  64. I. De Marco, S. Riemma, R. Iannone, J. Supercrit. Fluids 143, 305 (2019)

    Google Scholar 

  65. M. Dowson, M. Grogan, T. Birks, D. Harrison, S. Craig, Appl. Energy 97, 396 (2012)

    CAS  Google Scholar 

  66. I. Pinto, J.D. Silvestre, J. de Brito, M.F. Júlio, J. Clean. Prod. 252, (2020)

  67. Y. Pan, X. Cheng, T. zhou, L. Gong, H. Zhang, Mater. Lett. 229, 265 (2018)

    CAS  Google Scholar 

  68. Y. Pan, S. He, L. Gong, X. Cheng, C. Li, Z. Li, Z. Liu, H. Zhang, Mater. Des. 113, 246 (2017)

    CAS  Google Scholar 

  69. T. Zhou, X. Cheng, Y. Pan, C. Li, L. Gong, H. Zhang, Appl. Surf. Sci. 437, 321 (2018)

    CAS  Google Scholar 

  70. F. He, X. He, W. Yang, X. Zhang, L. Zhou, J. Non. Cryst. Solids 488, 36 (2018)

    CAS  Google Scholar 

  71. J. Zhu, J. Hu, C. Jiang, S. Liu, Y. Li, Carbohydr. Polym. 207, 246 (2019)

    CAS  PubMed  Google Scholar 

  72. H. Tamon, H. Ishizaka, T. Yamamoto, T. Suzuki, Dry. Technol. 19, 313 (2001)

    CAS  Google Scholar 

  73. P. Terzioğlu, S. Yücel, Ç Kuş, Asia-Pacific J. Chem. Eng. 14, 1 (2019)

    Google Scholar 

  74. Y. Xu, N. Porter, J.L. Foster, J.P. Muir, P. Schwab, B.L. Burson, R.W. Jessup, Agronomy 10, 1 (2020)

    Google Scholar 

  75. J.A. Adebisi, J.O. Agunsoye, S.A. Bello, M. Haris, M.M. Ramakokovhu, M.O. Daramola, S.B. Hassan, Part. Sci. Technol. 38, 667 (2020)

    CAS  Google Scholar 

  76. S. Azat, E. Arkhangelsky, T. Papathanasiou, A.A. Zorpas, A. Abirov, V.J. Inglezakis, Comptes Rendus Chim. 23, 77 (2020)

    CAS  Google Scholar 

  77. H. Nguyen, M.Jamali Moghadam, H. Moayedi, J. Mater. Cycles Waste Manag. 21, 1039 (2019)

    CAS  Google Scholar 

  78. J. Choi, D.J. Suh, Catal. Surv. from Asia 11, 123 (2007)

    CAS  Google Scholar 

  79. L. Casas, A. Roig, E. Rodríguez, E. Molins, J. Tejada, J. Sort, J. Non. Cryst. Solids 285, 37 (2001)

    CAS  Google Scholar 

  80. Y.K. Li, D.K. Yang, Y.C. Chen, H.J. Su, J.C. Wu, and Y. W. Chen-Yang, Acta Biomater. 6, 1462 (2010)

  81. M. Koebel, A. Rigacci, P. Achard, J. Sol-Gel. Sci. Technol. 63, 315 (2012)

    CAS  Google Scholar 

  82. A.J. Hunt, C.A. Jantzen, W. Cao, in ASTM Spec. Tech. Publ., edited by R. S. Graves and D. C. Wysocki (ASTM International, West Conshohocken, PA, 1991), pp. 455–463

  83. N. Saad, M. Chaaban, D. Patra, A. Ghanem, H. El-Rassy, Microporous Mesoporous Mater. 292, 109759 (2020)

    CAS  Google Scholar 

  84. M. Nuckols, J. Henkener, J. Chao, C. Shaffer, M. Swiergosz, Proc. Int. Conf. Offshore Mech. Arct. Eng. - OMAE 2006, (2006)

  85. G. Mishra, N. Mittal, A. Sharma, ACS Appl. Mater. Interfaces 9, 19371 (2017)

    CAS  PubMed  Google Scholar 

  86. N. Mittal, D. Deva, R. Kumar, A. Sharma, Carbon N. Y. 93, 492 (2015)

    CAS  Google Scholar 

  87. M.F. Bertino, J.F. Hund, G. Zhang, C. Sotiriou-Leventis, A.T. Tokuhiro, N. Leventis, J. Sol-Gel. Sci. Technol. 30, 43 (2004)

    CAS  Google Scholar 

  88. H. Ren, L. Zhang, Colloids Surfaces A Physicochem. Eng. Asp. 372, 98 (2010)

    CAS  Google Scholar 

  89. M.A.B. Meador, S.L. Vivod, L. McCorkle, D. Quade, R.M. Sullivan, L.J. Ghosn, N. Clark, L.A. Capadona, J. Mater. Chem. 18, 1843 (2008)

    CAS  Google Scholar 

  90. H. Wu, Y. Chen, Q. Chen, Y. Ding, X. Zhou, H. Gao, J. Nanomater. 2013, (2013)

  91. Y. Liao, H. Wu, Y. Ding, S. Yin, M. Wang, A. Cao, J. Sol-Gel. Sci. Technol. 63, 445 (2012)

    CAS  Google Scholar 

  92. B. Yuan, S. Ding, D. Wang, G. Wang, H. Li, Mater. Lett. 75, 204 (2012)

    CAS  Google Scholar 

  93. X. Yang, Y. Sun, D. Shi, J. Liu, Mater. Sci. Eng. A 528, 4830 (2011)

    Google Scholar 

  94. J.L. Mohanan, S.L. Brock, Chem. Mater. 15, 2567 (2003)

    CAS  Google Scholar 

  95. G. Guzel Kaya, E. Yilmaz, H. Deveci, Adv. Powder Technol. 31, 926 (2020)

    CAS  Google Scholar 

  96. H. Rocha, U. Lafont, C. Semprimoschnig, Acta Astronaut. 165, 9 (2019)

    CAS  Google Scholar 

  97. W. Gonçalves, J. Morthomas, P. Chantrenne, M. Perez, G. Foray, C.L. Martin, Acta Mater. 145, 165 (2018)

    Google Scholar 

  98. S.P. Patil, V.G. Parale, H.H. Park, B. Markert, Mater. Sci. Eng. A 742, 344 (2019)

    CAS  Google Scholar 

  99. S.P. Patil, A. Rege, M. Itskov, B. Markert, J. Non. Cryst. Solids 498, 125 (2018)

    CAS  Google Scholar 

  100. L.D. Gelb, J. Phys. Chem. C 111, 15792 (2007)

    CAS  Google Scholar 

  101. S.P. Patil, A. Rege, M. Sagardas, Itskov, B. Markert, J. Phys. Chem. B 121, 5660 (2017)

    CAS  PubMed  Google Scholar 

  102. S.P. Patil, Molecules 24, (2019)

  103. Z. Talebi, P. Soltani, N. Habibi, F. Latifi, Constr. Build. Mater. 220, 76 (2019)

    CAS  Google Scholar 

  104. “business innovation observatory Aerogels, getting their second wind - Google Search.” https://www.google.com/search?q=business+innovation+observatory+Aerogels%2 C+getting+their+second+wind&oq=business+innovation+observatory+Aerogels%2 C+getting+their+second+wind&aqs=chrome.69i57j69i60.300j0j7&sourceid=chrome&ie=UTF-8 (accessed Apr. 13, 2021).

  105. “Aerogels 2021–2031: Technologies, Markets and Players: IDTechEx.” https://www.idtechex.com/en/research-report/aerogels-2021-2031-technologies-markets-and-players/801 (accessed Apr. 13, 2021).

  106. E. Strobach, B. Bhatia, S. Yang, L. Zhao, E.N. Wang, J. Non. Cryst. Solids 462, 72 (2017)

    CAS  Google Scholar 

  107. “Making a remarkable material even better | MIT Energy Initiative.” https://energy.mit.edu/news/making-a-remarkable-material-even-better/ (accessed Apr. 13, 2021).

  108. S. Zhao, G. Siqueira, S. Drdova, D. Norris, C. Ubert, A. Bonnin, S. Galmarini, M. Ganobjak, Z. Pan, S. Brunner, G. Nyström, J. Wang, M.M. Koebel, W.J. Malfait, Nature 584, 387 (2020)

    CAS  PubMed  Google Scholar 

  109. A.R.A. Talib, M.I.N. Bheekhun, Struct. Heal. Monit. Biocomposites, Fibre-Reinforced Compos. Hybrid Compos (Elsevier, 2018), pp. 191–225

  110. C.A. García-González, T. Budtova, L. Durães, C. Erkey, P. Del Gaudio, P. Gurikov, M. Koebel, F. Liebner, M. Neagu, I. Smirnova, Molecules 24, (2019)

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, F.A. and S.A.S.; methodology, F.A. and V.J.I; investigation, F.A.; resources, S.A.S. and M.S.; writing—original draft preparation, F.A.; writing—review and editing, V.J.I.; supervision, S.A.S. and M.S; project administration, V.J.I; funding acquisition, V.J.I. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Faheem Akhter.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akhter, F., Soomro, S.A. & Inglezakis, V.J. Silica aerogels; a review of synthesis, applications and fabrication of hybrid composites. J Porous Mater 28, 1387–1400 (2021). https://doi.org/10.1007/s10934-021-01091-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01091-3

Keywords

  • Silica aerogels
  • Synthesis
  • Applications
  • Hybrid composites