Synthesis of composite zeolites composed of SAPO-5 and SAPO-34 and its application in methanol dehydration to light olefins


In present work, bi-phases composite zeolites consisting of SAPO-5 and SAPO-34 (named as SSC) are prepared by a traditional hydrothermal way, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 adsorption–desorption, intelligent gravimetric analyzer (IGA), intrusive mercury technology, and NH3-TPD techniques. The results display that the crystals in the as-synthesized composites have a hierarchical pore system with a size of about 3–130 nm, which displays a butterfly-like pattern on the crystal faces and runs throughout the whole crystal. Catalytic performances of the as-synthesized SSC catalysts are tested during methanol to olefin (MTO). As compared with a microporous composite catalyst, the hierarchical SSC composite catalyst displays excellent catalytic performances with a prolonged catalytic life and an elevated selectivity for light olefins.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    J. Pérez-Ramírez, C.H. Christensen, K. Egeblad, C.H. Christensend, J.C. Groen, Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem. Soc. Rev. 37, 2530 (2008)

    Article  Google Scholar 

  2. 2.

    Y.S. Tao, H. Kanoh, K. Kaneko, Synthesis of mesoporous zeolite A by resorcinol-formaldehyde aerogel templating. Langmuir 21, 504 (2005)

    CAS  Article  Google Scholar 

  3. 3.

    S. van Donk, A.H. Janssen, J.H. Bitter, K.P. de Jong, Generation, characterization, and impact of mespores in zeolite catalysts. Catal. Rev. Sci. Eng. 45, 297 (2003)

    Article  Google Scholar 

  4. 4.

    L.C. Zhang, X.B. Sun, M. Pan, X.N. Yang, Y.C. Liu, J.H. Sun, Q.H. Wang, J.J. Zheng, Y. Wang, J.H. Ma, W.L. Li, R.F. Li, Interfacial effects between carbon nanotube templates and precursors on fabricating a wall-crystallized hierarchical pore system in zeolite crystals. J. Mater. Sci. 55, 10412–10426 (2020)

    CAS  Article  Google Scholar 

  5. 5.

    X.Y. Cui, J.J. Wang, M. Pan, W.W. Ning, L.L. Yan, J.J. Zheng, R.F. Li, Hierarchical SAPO-34: Synthesis and Catalytic Performances in Methanol to Olefins. Chin. J. Inor. Chem. 34(2), 300–308 (2018)

    CAS  Google Scholar 

  6. 6.

    D. Verboekend, J. Pérez-Ramírez, Design of hierarchical zeolite catalysts by desilication. Catal. Sci. Technol. 1(6), 879–890 (2011)

    CAS  Article  Google Scholar 

  7. 7.

    L. Wu, V. Degirmenci, P.C.M.M. Magusin, N.J.H.G.M. Lousberg, E.J.M. Hensen, Mesoporous SSZ-13 zeolite prepared by a dual-template method with improved performance in the methanol-to-olefins reaction. J. Catal. 298, 27–40 (2013)

    CAS  Article  Google Scholar 

  8. 8.

    A.K. Singh, R. Yadav, A. Sakthivel, Synthesis, characterization, and catalytic application of mesoporous SAPO-34 (MESO-SAPO-34) molecular sieves. Micropor. Mesopor. Mater. 181, 166–174 (2013)

    CAS  Article  Google Scholar 

  9. 9.

    A. Sayari, Catalysis by crystalline mesoporous molecular sieves. Chem. Mater. 8(8), 1840–1852 (1996)

    CAS  Article  Google Scholar 

  10. 10.

    A. Corma, From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97(6), 2373–2420 (1997)

    CAS  Article  Google Scholar 

  11. 11.

    Y.C. Liu, B. Qin, H.X. Gao, W.W. Ning, L.C. Zhang, J.J. Zheng, Y.Z. Du, Y. Wang, W.L. Li, R.F. Li, Core-shell Y zeolite with a mono-crystalline core and a loosely aggregating polycrystalline shell: a hierarchically cracking catalyst for large reactants. Catal. Sci. Technol. 10, 2303–2312 (2020)

    CAS  Article  Google Scholar 

  12. 12.

    Y.X. Li, Y.H. Huang, J.H. Guo, M.Y. Zhang, D.Z. Wang, F. Wei, Y. Wang, Hierarchical SAPO-34/18 zeolite with low acid site density for converting methanol to olefins. Catal. Today 233, 2–7 (2014)

    CAS  Article  Google Scholar 

  13. 13.

    S.Y. Liu, H.K. Zhang, H.M. Chen, Z.Q. Chen, L.W. Zhang, J. Ren, X.D. Wen, Y. Yang, Y.-W. Li, Fabrication of core-shell TON@MFI material and its enhanced catalytic performance for toluene alkylation. Catal. Sci. Technol. 10, 1281–1291 (2020)

    CAS  Article  Google Scholar 

  14. 14.

    N. Masoumifard, R. Guillet-Nicolas, F. Kleitz, Synthesis of Engineered Zeolitic Materials: From Classical Zeolites to Hierarchical Core-Shell Materials. Adv. Mater. 30, 1704439–1704479 (2018)

    Article  Google Scholar 

  15. 15.

    L. Huang, W. Guo, P. Deng, Z. Xue, Q. Li, Investigation of synthesizing mcm-41/zsm-5 composites. J. Phy. Chem. B 104(13), 2817–2823 (2000)

    CAS  Article  Google Scholar 

  16. 16.

    J.J. Zheng, X.W. Zhang, Y. Wang, Y.D. Bai, W.F. Sun, R.F. Li, Synthesis and catalytic performance of a bi-phase core-shell zeolite composite. J. Porous Mater. 16, 731–736 (2009)

    CAS  Article  Google Scholar 

  17. 17.

    Y.S. Ooi, R. Zakaria, A.R. Mohamed, S. Bhatia, Synthesis of composite material mcm-41/beta and its catalytic performance in waste used palm oil cracking. Appl. Catal. A Gen. 274(1–2), 15–23 (2004)

    CAS  Article  Google Scholar 

  18. 18.

    X. Li, F. Rezaei, D.K. Ludlow, A.A. Rownaghi, Synthesis of SAPO-34@ZSM-5 and SAPO-34@Silicalite-1 Core−Shell Zeolite Composites for Ethanol Dehydration. Ind. Eng. Chem. Res. 57, 1446–1453 (2018)

    CAS  Article  Google Scholar 

  19. 19.

    U. Olsbye, S. Svelle, M. Bj ø rgen, P. Beato, T.V.W. Janssens, F. Joensen, S. Bordiga, K.P. Lillerud, Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angew. Chem. Int. Ed. 51(24), 5810–5831 (2012)

    CAS  Article  Google Scholar 

  20. 20.

    J. Li, Y.X. Wei, J.R. Chen, S.T. Xu, Z. Liu, Cavity controls the selectivity: insights of confinement effects on MTO reaction. ACS Catal. 5(2), 661–665 (2014)

    Article  Google Scholar 

  21. 21.

    S. Teketel, L.F. Lundegaard, W. Skistad, S.M. Chavan, U. Olsbye, K.P. Lillerud, P. Beato, S. Svelle, Morphology-induced shape selectivity in zeolite catalysis. J. Catal. 327, 22–32 (2015)

    CAS  Article  Google Scholar 

  22. 22.

    G. Sastre, D.W. Lewis, C.R.A. Catlow, Modeling of Silicon Substitution in SAPO-5 and SAPO-34 Molecular Sieves. J. Phy. Chem. B 101(27), 5249–5262 (1997)

    CAS  Article  Google Scholar 

  23. 23.

    J.M. Campelo, F. Lafont, J.M. Marinas, Pt/sapo-5 and pt/sapo-11 as catalysts for the hydroisomerization and hydrocracking of n-octane. J. Chem. Soc. Faraday Trans. 91(10), 1551 (1995)

    CAS  Article  Google Scholar 

  24. 24.

    J.J. Zheng, X.B. Sun, Y.Z. Du, B. Qin, Y.Y. Zhang, H.Y. Zhang, M. Pan, R.F. Li, Structural features of core-shell zeolite-zeolite composite and its performance for methanol conversion into gasoline and diesel. J. Mater. Res. 31(15), 2302–2316 (2016)

    CAS  Article  Google Scholar 

  25. 25.

    G.S. Wang, Y.J. Liu, J.J. Zheng, M. Pan, H.Y. Zhang, B. Li, S. Yuan, Y.M. Yi, H.P. Tian, R.F. Li, Zeolite-zeolite composite fabricated by polycrystalline Y zeolite crystals parasitizing ZSM-5 zeolite. J. Mater. Res. 30(16), 2434–2446 (2015)

    CAS  Article  Google Scholar 

  26. 26.

    X.X. Chen, D.Y. Xi, Q.M. Sun, N. Wang, Z.Y. Dai, D. Fan, V. Valtchev, J.H. Yu, A top-down approach to hierarchical sapo-34 zeolites with improved selectivity of olefin. Micropor. Mesopor. Mater. 234, 401–408 (2016)

    CAS  Article  Google Scholar 

  27. 27.

    S.H. Jhung, J.S. Chang, J.S. Hwang, S.E. Park, Selective formation of sapo-5 and sapo-34 molecular sieves with microwave irradiation and hydrothermal heating. Micropor. Mesopor. Mater. 64(1), 33–39 (2003)

    CAS  Article  Google Scholar 

  28. 28.

    P. Concepción, J.M. López Nieto, A. Mifsud, J. Pérez-Pariente, Preparation and characterization of Mg-containing AFI and chabazite-type materials. Zeolites 16(1), 56–64 (1996)

    Article  Google Scholar 

  29. 29.

    J. Gong, F. Tong, X.B. Ji, C.F. Zeng, C.Q. Wang, Y.N. Lv, L.X. Zhang, Hollow SAPO-34 Cubes with Hierarchically Organized Internal Structure. Cryst. Growth Des. 14(8), 3857–3863 (2014)

    CAS  Article  Google Scholar 

  30. 30.

    T.M. Neves, J.O. Fernandes, L.M. Lião, E.D. da Silva, C.A. da Rosa, V.B. Mortola, Glycerol dehydration over micro- and mesoporous ZSM-5 synthesized from a one-step method. Micropor. Mesopor. Mater. 275, 244–252 (2019)

    CAS  Article  Google Scholar 

  31. 31.

    H.B. Zhang, Z.J. Hu, L. Huang, H.X. Zhang, K.S. Song, L. Wang, Z.P. Shi, J.X. Ma, Y. Zhuang, W. Shen, Y.H. Zhang, H.L. Xu, Y. Tang, Dehydration of glycerol to acrolein over hierarchical ZSM-5 zeolites: effects of mesoporosity and acidity. ACS Catal. 5, 2548–2558 (2015)

    CAS  Article  Google Scholar 

  32. 32.

    M.A. Carreon, S.G. Li, J.L. Falconer, R.D. Noble, Alumina-supported SAPO-34 membranes for CO2/CH4 separation. J. Am Chem. Soc. 130(16), 5412–5413 (2008)

    CAS  Article  Google Scholar 

  33. 33.

    S. Li, G. Alvarado, R.D. Noble, J.L. Falconer, Effects of impurities on CO2/CH4 separations through SAPO-34 membranes. J. Membrane Sci. 251(1–2), 59–66 (2005)

    CAS  Article  Google Scholar 

  34. 34.

    A. Martínez, E. Peris, M. Derewinski, A. Burkat-Dulak, Improvement of catalyst stability during methane dehydroaromatization (MDA) on Mo/HZSM-5 comprising intracrystalline mesopores. Catal. Today 169(1), 75–84 (2011)

    Article  Google Scholar 

  35. 35.

    X. Wang, Y. Li, C. Luo, B. Chen, Direct synthesis of hierarchical zeolites with oriented nanocrystals without adding extra templates. RSC Adv. 3(18), 6295–6298 (2013)

    CAS  Article  Google Scholar 

  36. 36.

    S. Wilson, P. Barger, The characteristics of SAPO-34 which influence the conversion of methanol to light olefins. Micropor. Mesopor. Mater. 29(1–2), 117–126 (1999)

    CAS  Article  Google Scholar 

Download references


This work is supported by NSFC (21975174, 21706177), National Key R&D Program of China (2020YFB0606405) and SinoPEC (116050).

Author information



Corresponding author

Correspondence to Zhiping Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1770 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Zeng, Q., Sun, J. et al. Synthesis of composite zeolites composed of SAPO-5 and SAPO-34 and its application in methanol dehydration to light olefins. J Porous Mater (2021).

Download citation


  • Hierarchical pores
  • SAPO-5
  • SAPO-34
  • Butterfly-like distribution
  • Methanol to olefins