Skip to main content
Log in

CTAB-caped Cu nanoparticles doped on zeolitic imidazolate framework-ZIF-67 as bifunctional catalysts for oxygen-reduction and evolution reactions in alkaline media

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In order to facilitate the large-scale applications of rechargeable Zn–air batteries, non-noble-metal based materials with high activity for oxygen reduction (ORR) and evolution reactions (OER) are highly needed for replacing noble-metal based materials. Here, a new method is used for developing Cu-doped ZIF-67 (Cu/ZIF-67) nanoparticles and carbonizing at various temperatures (500–900 °C). Benefiting from the doping of Cu nanoparticles on the surface of the ZIF-67 and the synergistic interaction between Cu and the underlying Co atoms, the Cu/Co-NC-800 electrocatalyst exhibits superior electrocatalytic activity for both ORR (Eo 0.98, E1/2 0.84 V) and OER (overpotential 0.278 V) and superior alkaline media stability relative to both prepared and commercial Pt/C (Eo 0.96 V). These insightful findings inspire new perspectives for economical-practical bifunctional oxygen electrocatalysts to be designed and synthesized rationally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Kim, D. Kim, Y. Jeon, Y. Li et al., Zeolitic imidazolate frameworks derived novel polyhedral shaped hollow Co–B–O@Co3O4 electrocatalyst for oxygen evolution reaction. Electrochim. Acta 299, 213–221 (2019)

    Article  CAS  Google Scholar 

  2. C. Alexander, A.M. Abakumov, R. Forslund, K.P. Johnston, K.J. Stevenson, Role of the carbon support on the oxygen reduction and evolution activities in LaNiO3 composite electrodes in alkaline solution. ACS Appl. Energy Mater. 4, 1549–1558 (2018)

    Article  Google Scholar 

  3. D. Alwast, J. Schnaidt, Z. Jusys, M. Armand, Ionic liquid electrolytes for metal-air batteries: interactions between O2, Zn2+ and H2O impurities. J. Electrochem 167, 070505 (2020)

    Article  CAS  Google Scholar 

  4. Z. Chang, F. Yu, Z. Liu, S. Peng et al., Co–Ni alloy encapsulated by N-doped graphene as a cathode catalyst for rechargeable hybrid Li-air batteries. ACS Appl. Mater. Interfaces 12, 4366–4372 (2020)

    Article  CAS  PubMed  Google Scholar 

  5. Y. Wang, H. Li, M. Li, F. Wang, J. Zhang, Facile method on the fast synthesis of hybrid zeolitic imidazolate frameworks. Inorg. Chim. Acta 510, 119785 (2020)

    Article  CAS  Google Scholar 

  6. H. Chen, Y. Li, H. Liu, Q. Ji et al., Metal-organic framework-derived sulfur and nitrogen dual-doped bimetallic carbon nanotubes as electrocatalysts for oxygen evolution reaction. Solid State Chem. 288, 121421 (2020)

    Article  CAS  Google Scholar 

  7. Y. Wang, S. Li, Y. Chen, X. Shi et al., 3D hierarchical MOF-derived CoP@N-doped carbon composite foam for efficient hydrogen evolution reaction. Appl. Surf. Sci. 505, 144503 (2020)

    Article  CAS  Google Scholar 

  8. J. Chang, Y. Wang, L. Chen, D. Wu et al., Cobalt nanoparticles embedded nitrogen doped carbon, preparation from alkali deprotonation assisted ZIF-67 and its electrocatalytic performance in oxygen evolution reaction. Int. J. Hydrog. Energy 45, 12787–12797 (2020)

    Article  CAS  Google Scholar 

  9. J. Tan, X. He, F. Yin, B. Chen, Bimetallic ZnCo zeolitic imidazolate framework/polypyrrole-polyaniline derived Co/N-doped carbon for oxygen reduction reaction. Int. J. Hydrog. Energy 45, 15453–15464 (2020)

    Article  CAS  Google Scholar 

  10. Y. Xue, Y. Wang, Z. Pan, C. Zhang, Metal-organic frameworks derived cobalt encapsulated in porous nitrogen-doped carbon nanostructure towards highly efficient and durable oxygen reduction reaction electrocatalysis. Power Sources 451, 227747 (2020)

    Article  CAS  Google Scholar 

  11. L. Feng, R. Ding, Y. Chen, J. Wang, L. Xu, Zeolitic imidazolate framework-67 derived ultra-small CoP particles incorporated into N-doped carbon nanofiber as efficient bifunctional catalysts for oxygen reaction. Inorg. Chim. Acta 452, 119785 (2020)

    Google Scholar 

  12. S. Song, Y. Wang, W. Li, P. Tian et al., Co-doped Ni3S2 hierarchical nanoarrays derived from zeolitic imidazolate frameworks as bifunctional electrocatalysts for highly enhanced overall-water-splitting activity. Alloys Compd. 827, 154299 (2020)

    Article  CAS  Google Scholar 

  13. H. Ge, G. Li, J. Shen, W. Ma et al., Co4N nanoparticles encapsulated in N-doped carbon box as tri-functional catalyst for Zn–air battery and overall water splitting. Appl. Catal. B 275, 119104 (2020)

    Article  CAS  Google Scholar 

  14. C. Wu, K. Wang, S. Chang, Y. Chang et al., High performance of metal-organic framework-derived catalyst supported by tellurium nanowire for oxygen reduction reaction. Renew. Energy 158, 324–331 (2020)

    Article  CAS  Google Scholar 

  15. Y. Dong, J. Zheng, Environmentally friendly synthesis of Co-based zeolitic imidazolate framework and its application as H2O2 sensor. Chem. Eng. 392, 123690 (2020)

    Article  CAS  Google Scholar 

  16. Y. Jing, MOF-derived Co, Fe, and Ni co-doped N-enriched hollow carbon as efficient electrocatalyst for oxygen reduction reaction. Chem. Eng. 397, 125539 (2020)

    Article  CAS  Google Scholar 

  17. W. Zhang, J. Chu, S. Li, Y. Li, L. Li, CoNxC active sites-rich three-dimensional porous carbon nanofibers network derived from bacterial cellulose and bimetal-ZIFs as efficient multifunctional electrocatalyst for rechargeable Zn–air batteries. Energy Chem. 51, 323–332 (2020)

    Article  Google Scholar 

  18. C. Wang, W. Chen, D. Yuan, S. Qian et al., Tailoring the nanostructure and electronic configuration of metal phosphides for efficient electrocatalytic oxygen evolution reactions. Nano Energy 69, 104453 (2020)

    Article  CAS  Google Scholar 

  19. Q. Zhou, Z. Zhang, J. Cai, B. Liu et al., Template-guided synthesis of Co nanoparticles embedded in hollow nitrogen doped carbon tubes as a highly efficient catalyst for rechargeable Zn–air batteries. Nano Energy 71, 104592 (2020)

    Article  CAS  Google Scholar 

  20. S. Agarwal, X. Yu, A. Manthiram, A pair of metal organic framework (MOF)-derived oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts for zinc-air batteries. Mater. Today Energy 16, 100405 (2020)

    Article  Google Scholar 

  21. I. Abidat, E. Cazayus, L. Loupias, C. Morais et al., Co3O4/rGO catalysts for oxygen electrocatalysis: on the role of the oxide/carbon. J. Electrochem. 166, 94–102 (2019)

    Article  Google Scholar 

  22. B.K. Barman, K.K. Nanda, CoFe nanoalloys encapsulated in N-doped graphene layers as a Pt-free multifunctional robust catalyst: elucidating the role of Co-alloying and N-doping. ACS Sustain. Chem. Eng 6, 12736–12745 (2018)

    Article  CAS  Google Scholar 

  23. Y. Cheng, S. He, J. Veder, R. De Marco, S. Yang, Atomically dispersed bimetallic FeNi catalysts as highly efficient bifunctional catalysts for reversible oxygen evolution and oxygen reduction reactions. ChemElectroChem 6, 3478–3487 (2019)

    Article  CAS  Google Scholar 

  24. M.A. Kirsanova, V.D. Okatenko, D.A. Aksyonov, R.P. Forslund et al., Bifunctional OER/ORR catalytic activity in thein the tetrahedral YBaCo4O7.3 oxide. Mater. Chem. A 7, 330–341 (2019)

    Article  CAS  Google Scholar 

  25. Q.Y. Li, L. Zhang, Y.X. Xu, Q. Li et al., Smart Yolk/Shell ZIF-67@POM hybrids as efficient electrocatalysts for the oxygen evolution reaction. ACS Sustain. Chem. Eng. 7, 5027–5033 (2019)

    Article  CAS  Google Scholar 

  26. G.C. Silva, S. Cherevko, K.J.J. Mayrhofer, E.A. Ticianelli, Dissolution stability: the major challenge in the regenerative fuel cells bifunctional catalysis. Electrochem. Soc. 165, 1376–1384 (2018)

    Article  Google Scholar 

  27. G.C. Silva, M.R. Fernandes, E.A. Ticianelli, Activity and stability of Pt/IrO2 bifunctional materials as catalysts for the oxygen evolution/reduction reactions. ACS Catal. 8, 2081–2092 (2018)

    Article  Google Scholar 

  28. K. Imran, K. Ramya, P.C. Ghosh, A. Sarkar, N. Rajalakshmi, Ion immobilized bifunctional electrocatalyst for oxygen reduction and evolution reaction. ACS Appl. Energy Mater. 2, 5257–5275 (2019)

    Google Scholar 

  29. T. Sadhasivam, G. Palanisamy, S. Roh, Electro-analytical performance of bifunctional electrocatalyst materials in unitized regenerative fuel cell system. Int. J. Hydrog. Energy 43, 18169–18184 (2018)

    Article  CAS  Google Scholar 

  30. Q. Guo, C. Zhang, C. Zhang, S. Xin et al., Co3O4 modified Ag/g-C3N4 composite as a bifunctional cathode for lithium-oxygen battery. Energy Chem. 41, 185–193 (2020)

    Article  Google Scholar 

  31. M. Retuerto, F. Calle, L. Pascual, G. Lumbeeck et al., La1.5Sr0.5NiMn0.5Ru0.5O6 double perovskite with enhanced ORR/OER bifunctional catalytic activity. ACS Appl. Mater. Interfaces 11, 21454–21464 (2019)

    Article  CAS  PubMed  Google Scholar 

  32. X. Sun, P. Wei, S. Gu, J. Zhang et al., Atomic-level Fe-N-C coupled with Fe3C-Fe nanocomposites in carbon matrixes as high-efficiency bifunctional oxygen catalysts. Small 16, 1–10 (2020)

    Google Scholar 

  33. Y.H. Tsou, Y.Y. Chuang, J.S. Chen, Effect of surface bonding of FePC with electro spun carbon nanofiber on electrocatalytic performance for aprotic Li-O2 batteries. Colloid Interface Sci. 562, 213–223 (2020)

    Article  CAS  Google Scholar 

  34. D. Zhao, Z. Tang, W. Xu, Z. Wu et al., N, S-codoped CNTs supported Co4S3 nanoparticles prepared by using CdS nanorods as sulfur sources and hard templates: an efficient catalyst for reversible oxygen electrocatalysis. Colloid Interface Sci. 560, 186–197 (2020)

    Article  CAS  Google Scholar 

  35. X. Zhong, W. Yi, Y. Qu, L. Zhang et al., Co single-atom anchored on Co3O4 and nitrogen-doped active carbon toward bifunctional catalyst for zinc-air batteries. Appl. Catal. B-Environ. 260, 118188 (2020)

    Article  CAS  Google Scholar 

  36. Y. Dou, J. Zhou, A. Zhou, J. Li, Z. Nie, Visible-light responsive MOF encapsulation of noble-metal-sensitized semiconductors for high-performance photoelectrochemical water splitting. Mater. Chem. A 5, 19491–19498 (2017)

    Article  CAS  Google Scholar 

  37. T. Priamushko, R. Guillet-Nicolas, F. Kleitz, Mesoporous nanocast electrocatalysts for oxygen reduction and oxygen evolution reactions. Inorganics 7, 1–21 (2019)

    Article  Google Scholar 

  38. Z. Liang, C. Zhang, H. Yuan, W. Zhang et al., PVP-assisted transformation of a metal-organic framework into Co-embedded N-enriched meso/microporous carbon materials as bifunctional electrocatalysts. Chem. Commun. 54, 7519–7522 (2018)

    Article  CAS  Google Scholar 

  39. Y. Hao, Y. Xu, J. Liu, X. Sun, Nickel-cobalt oxides supported on Co/N decorated graphene as an excellent bifunctional oxygen catalyst. Mater. Chem. A 5, 5594–5600 (2017)

    Article  CAS  Google Scholar 

  40. X. Sang, J. Chen, M. Jing, G. Shi et al., Sustainable synthesis of nitrogen-doped porous carbon with improved electrocatalytic performance for hydrogen evolution. New J. Chem. 43, 3078–3083 (2019)

    Article  CAS  Google Scholar 

  41. K.B. Ibrahim, M.T. Soressa, A.C. Mulatu, A.W. Kahsay et al., A review of transition metal-based bifunctional oxygen electrocatalysts. Chin. Chem. Soc. 66, 1–37 (2019)

    Google Scholar 

  42. A. Qayoommugheri, U. Aftab, M. Ishaqabro, S. Raza et al., Co3O4/NiO bifunctional electrocatalyst for water splitting. Electrochim. Acta 306, 9–17 (2019)

    Article  CAS  Google Scholar 

  43. A. Ashok, A. Kumar, J. Ponraj, Highly active and stable bi-functional NiCoO2 catalyst for oxygen reduction and oxygen evolution reactions in alkaline medium. Int. J. Hydrog. Energy 44, 16603–16614 (2019)

    Article  CAS  Google Scholar 

  44. B.-W. Zhang, Y.-X. Wang, S.-L. Chou, H.-K. Liu, S.-X. Dou, Fabrication of superior single-atom catalysts toward diverse electrochemical reactions. Small Methods 3, 1800497 (2019)

    Article  Google Scholar 

  45. Z.J. Wang, Y.Z. Lu, Y. Yan, T.Y.P. Larissa, X. Zhang, D. Wuu et al., Core-shell carbon materials derived from metal-organic frameworks as an efficient oxygen bifunctional electrocatalyst. Nano Energy 30, 368–378 (2016)

    Article  CAS  Google Scholar 

  46. P.P. Zhao, X. Hua, W. Luo, S.L. Chen, G.Z. Cheng, Metal-organic framework-derived hybrid of Fe3C nanorod-encapsulated, N-doped CNTs on porous carbon sheets for highly efficient oxygen reduction and water oxidation. Catal. Sci. Technol. 6, 6365–6371 (2016)

    Article  CAS  Google Scholar 

  47. Y. Fu, H.Y. Yu, C. Jiang, T.H. Zhang, R. Zhan, X.W. Li et al., NiCo alloy nanoparticles decorated on N-doped carbon nanofibers as highly active and durable oxygen electrocatalyst. Adv. Funct. Mater. 28, 1705094 (2017)

    Article  Google Scholar 

  48. A. Ashok, A. Kumar, A. Matin, F. Tarlochan, Synthesis of highly efficient bifunctional Ag/Co3O4 catalyst for oxygen reduction and oxygen evolution reactions in alkaline medium. ACS Omega 3, 7745–7756 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Z. Wang, J. Huang, Metal-organic frameworks, and their derivatives with graphene composites: preparation and applications in electrocatalysis and photocatalysis. Mater. Chem. A 8, 2934–2961 (2020)

    Article  CAS  Google Scholar 

  50. L. Yang, Y. Song, L. Wang, Multi-emission metal-organic framework composites for multicomponent ratiometric fluorescence sensing: recent developments and future challenges. Mater. Chem. B 8, 3292–3315 (2020)

    Article  CAS  Google Scholar 

  51. J. Wan, D. Liu, H. Xiao, H. Rong et al., Facet engineering in metal-organic frameworks to improve their electrochemical activity for water oxidation. Chem. Commun. 56, 4316–4319 (2020)

    Article  CAS  Google Scholar 

  52. R.J. Young, C.J. Sumby, M.T. Huxley, E. Pardo et al., Isolating reactive metal-based species in metal-organic frameworks-viable strategies and opportunities. Chem. Sci. 11, 4031–4050 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. L. Chen, H. Wang, Bimetallic metal-organic frameworks, and their derivatives. Chem. Sci. 11, 5369–5403 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. A. Parkash, Incorporation of Pt–Cr nanoparticles into highly porous MOF-5 as efficient oxygen reduction electrocatalysts. Nanotechnology 31, 445403 (2020)

    Article  CAS  PubMed  Google Scholar 

  55. A. Parkash, Copper doped zeolitic imidazole frameworks (ZIF-8): a new generation of single-atom catalyst for oxygen reduction reaction in alkaline media. J. Electrochem. Soc. 167, 155504 (2020)

    Article  CAS  Google Scholar 

  56. A. Parkash, Pt nanoparticles anchored on Cu-MOF-74: an efficient and durable ultra-low Pt electrocatalyst toward oxygen reduction reaction. ECS J. Solid State Sci. Technol. 9, 065021 (2020)

    Article  CAS  Google Scholar 

  57. D.W. Kang, M. Kang, C.S. Hong, Post-synthetic modification of porous materials: super protonic conductivities and membrane applications in fuel cells. Mater. Chem. A 8, 7474–7494 (2020)

    Article  CAS  Google Scholar 

  58. A. Mathur, A. Halder, One-step synthesis of bifunctional iron-doped manganese oxide nanorods for rechargeable zinc-air batteries. Catal. Sci. Technol. 9, 1245–1254 (2019)

    Article  CAS  Google Scholar 

  59. V.F. Mattick, X. Jin, R.E. White, K. Huang, A perovskite/noble-metal composite as a bifunctional oxygen electrocatalyst for alkaline electrochemical cells. J. Energy Storage 23, 537–543 (2019)

    Article  Google Scholar 

  60. D.M. Morales, M.A. Kazakova, S. Dieckhöfer, A.G. Selyutin et al., Trimetallic Mn-Fe-Ni oxide nanoparticles supported on multi-walled carbon nanotubes as high-performance bifunctional ORR/OER electrocatalyst in alkaline media. Adv. Funct. Mater. 1905992, 1–12 (2019)

    Google Scholar 

  61. A. Parra-Puerto, K.L. Ng, K. Fahy, A.E. Goode et al., Supported transition metal phosphides: activity survey for HER, ORR, OER, and corrosion resistance in acid and alkaline electrolytes. ACS Catal. 9, 11515–11529 (2019)

    Article  CAS  Google Scholar 

  62. B. Szcze, B. Sylwia, C. Jerzy et al., Materials horizons mechanochemical synthesis of highly porous materials. Mater. Horiz. 7, 1457 (2020)

    Article  Google Scholar 

  63. G. Mingrui, W. Ling, Z. Jing, J. Xiuling, C. Dairong, W. Ting, A novel design of electrolyser using trifunctional (HER/OER/ORR) electrocatalysts for decoupled H2/O2 generation and solar to hydrogen conversion. J. Mater. Chem. A 8, 16609–16615 (2020)

    Article  Google Scholar 

  64. Z. Jingyan, B. Xiaowan, W. Tongtong, X. Wen, X. Pinxian, W. Jinlan, G. Daqiang, W. John, Bimetallic nickel cobalt sulfide as efficient electrocatalyst for Zn–Air battery and water splitting. Nano-Micro Lett. 11, 2 (2019)

    Article  Google Scholar 

  65. H. Meiling, W. Bin, Z. Chaochao, D. Shuping et al., 2D metal–organic framework derived CuCo alloy nanoparticles encapsulated by nitrogen-doped carbonaceous nanoleaves for efficient bifunctional oxygen electrocatalyst and zinc–air batteries. Chem. Eur. J. 25, 12780–12788 (2019)

    Article  Google Scholar 

  66. X. Yang, H. Zhehao, W. Bin, L. Zuozhong et al., A two-dimensional multi-shelled metal-organic framework and its derived bimetallic N-doped porous carbon for electrocatalytic oxygen reduction. Chem. Commun. 55, 14805–14808 (2019)

    Article  Google Scholar 

  67. G. Xueqing, C. Dandan, Q. Jing, L. Fang et al., NiFe oxalate nanomesh array with homogenous doping of Fe for electrocatalytic water oxidation. Small 15, 1904579 (2019)

    Article  Google Scholar 

  68. L. Peitao, R. Jiaqi, X. Baorui, X. Shibo, G. Daqiang, W. John, Bifunctional oxygen electrocatalyst of mesoporous Ni/NiO nanosheets for flexible rechargeable zn–air batteries. Nano-Micro Lett. 12, 68 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Parkash.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parkash, A. CTAB-caped Cu nanoparticles doped on zeolitic imidazolate framework-ZIF-67 as bifunctional catalysts for oxygen-reduction and evolution reactions in alkaline media. J Porous Mater 28, 1245–1260 (2021). https://doi.org/10.1007/s10934-021-01076-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01076-2

Keywords

Navigation