Photoluminescence study of SBA-15@ZnO/Au nanocomposite for potential use in Staphylococcus aureus detection

Abstract

Staphylococcus aureus is most common causes of hospital-acquired infections and food-associated disease. In the last years, sensing platform based on fluorescence- nanomaterials and nanocomposites have been attracted a great attention for detection of bacteria and macromolecules. In this study, a new modified mesoporous silica SBA-15 with ZnO and Au nanoparticles (SBA-15@ZnO/Au) was prepared to enhance the photoluminescence emission of SBA-15 matrix and investigate the potential use as a nano probe for detection of S. aureus bacteria. Au nanoparticles were added to the SBA-15 after loading ZnO nanoparticles and the SBA-15@ZnO/Au nanocomposite was successfully fabricated. The Structural, morphological, physicochemical and optical properties of the prepared samples have been studied. The low-angle X-ray diffraction (XRD) pattern showed highly ordered two-dimensional hexagonal lattice of SBA-15 and the wide-angle XRD pattern proved the formation of ZnO and Au nanoparticles. The results of the Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analysis showed that the prepared nanocomposite have a regular two dimensional hexagonal structure with cylindrical channels even after loading ZnO and Au nanoparticles. According to Nitrogen adsorption–desorption isotherm measurement, the pore diameter and the specific surface area of SBA-15@ZnO/Au nanocomposite have been obtained 3.15 nm and 604.19 m2/g. Photoluminescence (PL) spectra of bare SBA-15@ZnO/Au nanocomposite showed three peaks at central wavelength of 410, 500 and 750 nm arising from electron transfer process and radiative decay of collective plasmonic states. After addition of S. aureus bacteria, the nano probe-target complex was formed and the PL re-emission at 640 nm and quenching of PL emissions at 750 and 410 nm was observed. Furthermore, the new nanocomposite was demonstrated to have the proper sensitivity toward bacteria concentrations. The results can open promising prospect for this nanocomposite as a nano probe for detection of S. aureus in the UV–Visible region of electromagnetic spectrum.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    G.R. Corey, Clin. Infect. Dis. 48, S254-259 (2009). https://doi.org/10.1086/598186

    Article  PubMed  Google Scholar 

  2. 2.

    M.A. Argudín, M.C. Mendoza, M.R. Rodicio, Toxins 2, 1751–1773 (2010). https://doi.org/10.3390/toxins2071751

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    S.C. Ingham, K.L. Becker, M.A. Fanslau, J. Food Prot. 66, 2151–2155 (2003). https://doi.org/10.4315/0362-028x-66.11.2151

    Article  PubMed  Google Scholar 

  4. 4.

    J. Suehiro, R. Hamada, D. Noutomi, M. Shutou, M. Hara, J. Electrostat. 57, 157–168 (2003). https://doi.org/10.1016/S0304-3886(02)00124-9

    Article  Google Scholar 

  5. 5.

    P.A. Janssen, B.L. Selwood, S.R. Dobson, D. Peacock, P.N. Thiessen, Pediatrics 111, 15–20 (2003). https://doi.org/10.1542/peds.111.1.15

    Article  PubMed  Google Scholar 

  6. 6.

    G. Bonwick, C.J. Smith, Int. J. Food Sci. Technol. 39, 817–827 (2004). https://doi.org/10.1111/j.1365-2621.2004.00855.x

    CAS  Article  Google Scholar 

  7. 7.

    A. Huletsky, R. Giroux, V. Rossbach, M. Gagnon, M. Vaillancourt, M. Bernier et al., J. Clin. Microbiol. 42, 1875–1884 (2004). https://doi.org/10.1128/jcm.42.5.1875-1884.2004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    F. Mustafa, R.Y.A. Hassan, S. Andreescu, Sensors 17, 2121 (2017). https://doi.org/10.3390/s17092121

    CAS  Article  Google Scholar 

  9. 9.

    A.A.S. Gill, S. Singh, N. Thapliyal, R. Karpoormath, Microchimica 186, 114 (2019). https://doi.org/10.1007/s00604-018-3186-7

    CAS  Article  Google Scholar 

  10. 10.

    M. Shahdordizadeh, S.M. Taghdisi, N. Ansari, F.A. Langroodi, K. Abnous, M. Ramezani, Sens. Actuators B 241, 619–635 (2017). https://doi.org/10.1016/j.snb.2016.10.088

    CAS  Article  Google Scholar 

  11. 11.

    J. Yuan, S. Wu, N. Duan, X. Ma, Y. Xia, J. Chen et al., Talanta 127, 163–168 (2014). https://doi.org/10.1016/j.talanta.2014.04.013

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    J. Ji, Y. Pang, D. Li, X. Wang, Y. Xu, X. Mu, ACS Appl. Mater. Interfaces. 12, 12417–12425 (2020). https://doi.org/10.1021/acsami.9b20639

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    C. Hunsur Ravikumar, M. Ira Gowda, R. Geetha Balakrishna, Analyst (2019). https://doi.org/10.1039/C8AN02116C

    Article  PubMed  Google Scholar 

  14. 14.

    H. Safardoust-Hojaghan, M. Salavati-Niasari, O. Amiri, M. Hassanpour, J. Mol. Liq. 241, 1114–1119 (2017). https://doi.org/10.1016/j.molliq.2017.06.106

    CAS  Article  Google Scholar 

  15. 15.

    A. Bagheri Pebdeni, M. Hosseini, M.R. Ganjali, Food Anal. Methods 13, 2070–2079 (2020). https://doi.org/10.1007/s12161-020-01821-4

    Article  Google Scholar 

  16. 16.

    H. Wang, Y. Xiu, Y. Chen, L. Sun, L. Yang, H. Chen, X. Niu, RSC Adv. 9, 16278–16287 (2019). https://doi.org/10.1039/C9RA00907H

    CAS  Article  Google Scholar 

  17. 17.

    C.H. Zhang, L. Gui-Juan, W. Jia-Hai, Chin. J. Anal. Chem. 42(4), 607–615 (2014). https://doi.org/10.1016/S1872-2040(13)60726-4

    CAS  Article  Google Scholar 

  18. 18.

    D. Lewandowski, G. Schroeder, M. Sawczak, T. Ossowski, J. Phys. Chem. Solids 85, 56–61 (2015). https://doi.org/10.1016/j.jpcs.2015.04.007

    CAS  Article  Google Scholar 

  19. 19.

    N. Bouazizi, S. Louhichi, R. Ouargli, R. Bargougui, J. Vieillard, F. Le Derf, A. Azzouz, J. Appl. Surf. Sci. 404, 146–153 (2017). https://doi.org/10.1016/j.apsusc.2017.01.250

    CAS  Article  Google Scholar 

  20. 20.

    M.A. Shenashen, S.A. El-Safty, M. Khairy, J. Porous Mater. 20, 679–692 (2013). https://doi.org/10.1007/s10934-012-9642-6

    CAS  Article  Google Scholar 

  21. 21.

    Y. Xu, F.Y. Kutsanedzie, M. Hassan, J. Zhu, W. Ahmad, H. Li, Q. Chen, Food Chem. 315, 126300 (2020). https://doi.org/10.1016/j.foodchem.2020.126300

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    L. Huang, S. Kawi, K. Hidajat, S.C. Ng, Microporous Mesoporous Mater. 82(1–2), 87–97 (2005). https://doi.org/10.1016/j.micromeso.2005.02.018

    CAS  Article  Google Scholar 

  23. 23.

    D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, Am. Chem. Soc. 120(24), 6024–6036 (1998). https://doi.org/10.1021/ja974025i

    CAS  Article  Google Scholar 

  24. 24.

    R. Kishor, A.K. Ghoshal, J. Microporous Mesoporous Mater. 242, 127–135 (2017). https://doi.org/10.1016/j.micromeso.2017.01.020

    CAS  Article  Google Scholar 

  25. 25.

    X. Wang, K.S.K. Lin, J.C.C. Chan, S. Cheng, J. Phys. Chem. B 109, 1763–1769 (2005). https://doi.org/10.1021/jp045798d

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    B. Valeur, I. Leray, J. Coord. Chem. Rev. 205, 3–40 (2000). https://doi.org/10.1016/S0010-8545(00)00246-0

    CAS  Article  Google Scholar 

  27. 27.

    T.A. Do, T.G. Ho, T.H. Bui, Q.N. Pham, H.T. Giang, T.T. Do, D. Van Nguyen, D.L. Tran, Beil. J. Nanotechnol. 9, 771–779 (2018). https://doi.org/10.3762/bjnano.9.70

    CAS  Article  Google Scholar 

  28. 28.

    A.K. Gupta, C.H. Hsu, C.H. Chen, A. Purwidyantri, B.A. Prabowo, J.L. Wang, Y.C. Tian, C.S. Lai, Sens. Actuators B 290, 100–109 (2019). https://doi.org/10.1016/j.snb.2019.03.020

    CAS  Article  Google Scholar 

  29. 29.

    H. Vojoudi, B. Bastan, J.B. Ghasemi et al., Anal. Bioanal. Chem. 411, 5593–5603 (2019). https://doi.org/10.1007/s00216-019-01940-w

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Q. Jiang, Z.Y. Wu, Y.M. Wang, Y. Cao, C.F. Zhou, J.H. Zhu, J. Mater. Chem. 16, 1536–1542 (2006). https://doi.org/10.1039/B516061H

    CAS  Article  Google Scholar 

  31. 31.

    L. Gai, H. Jiang, D. Cui, Q. Wang, J. Microporous Mesoporous Mater. 120, 410–413 (2009). https://doi.org/10.1016/j.micromeso.2008.12.008

    CAS  Article  Google Scholar 

  32. 32.

    D. Bhuyan, M. Saikia, L. Saikia, J. Microporous Mesoporous Mater. 256, 39–48 (2018). https://doi.org/10.1016/j.micromeso.2017.06.052

    CAS  Article  Google Scholar 

  33. 33.

    Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005). https://doi.org/10.1063/1.1992666

    CAS  Article  Google Scholar 

  34. 34.

    T. Bora, H.H. Kyaw, S. Sarkar, S.K. Pal, J. Dutta, Beil. J. Nanotechnol. 2, 681–690 (2011). https://doi.org/10.3762/bjnano.2.73

    CAS  Article  Google Scholar 

  35. 35.

    G.Q. Tang, Y. Xiong, L.Z. Zhang, G.L. Zhang, J. Chem. Phys. Lett. 395, 97–102 (2004). https://doi.org/10.1016/j.cplett.2004.07.067

    CAS  Article  Google Scholar 

  36. 36.

    H.G. Chen, J.L. Shi, H.R. Chen, J.N. Yan, Y.S. Li, Z.L. Hua, Y. Yang, D.S. Yan, Opt. Mater. 25, 79–84 (2004). https://doi.org/10.1016/S0925-3467(03)00229-5

    CAS  Article  Google Scholar 

  37. 37.

    J. van der Meer, I. Bardez-Giboire, C. Mercier, B. Revel, A. Davidson, R. Denoyel, J. Phys. Chem. C 114, 3507–3515 (2010). https://doi.org/10.1021/jp907002y

    CAS  Article  Google Scholar 

  38. 38.

    Q. Lu, Z. Wang, J. Li, P. Wang, X. Ye, Nanoscale Res. Lett. 4, 646–654 (2009). https://doi.org/10.1007/s11671-009-9294-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    J.E. Park, J. Kim, J.M. Nam, Chem. Sci. 8, 4696–4704 (2017). https://doi.org/10.1039/C7SC01441D

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    D. Zhang, H. Ushita, P. Wang, C. Park, R.I. Murakami, S.C. Yang, X. Song, Appl. Phys. Lett. 103, 093114 (2013). https://doi.org/10.1063/1.4819476

    CAS  Article  Google Scholar 

  41. 41.

    Y. Bai, T. Shu, L. Su, X. Zhang, Crystals 10, 357 (2020). https://doi.org/10.3390/cryst10050357

    Article  Google Scholar 

  42. 42.

    L. Khriachtchev, L. Heikkilä, T. Kuusela, Appl. Phys. Lett. 78, 1994 (2001). https://doi.org/10.1063/1.1359491

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elham Darabi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Estakhri, S., Darabi, E., Akbari-Adergani, B. et al. Photoluminescence study of SBA-15@ZnO/Au nanocomposite for potential use in Staphylococcus aureus detection. J Porous Mater (2021). https://doi.org/10.1007/s10934-021-01050-y

Download citation

Keywords

  • Mesoporous silica
  • ZnO nanoparticles
  • Au nanoparticles
  • Plasmonic interaction
  • Photoluminescence
  • Staphylococcus aureus