Construction of graphitic carbon nitride nanosheets via an improved solvent exfoliation strategy and interfacial mechanics insight from molecular dynamics simulations

Abstract

Graphitic carbon nitride (g-C3N4) nanosheets have attracted great attention in the areas of photocatalysis, sensors, energy storages and membrane separations. A three-step exfoliation strategy was designed to use solvent exfoliating g-C3N4 nanosheets from bulk g-C3N4. In the first stage, bulk g-C3N4 was prepared and then exfoliated into g-C3N4 nanosheets by various solvents. In the second stage, molecular dynamics simulations were carried out and the energy barriers for the exfoliations were determined. Various interactions between solvent molecules and exfoliated nanosheet were analyzed. In the third stage, exfoliation was re-carried out according to the result from MD simulation to obtain optimal amount of exfoliated g-C3N4 nanosheets. The experimental result matched with the simulation prediction very well. In combination with simulation and experiment, a successful way to obtain maximum amount of exfoliated g-C3N4 nanosheet was set up. Then a 5.03 mg/mL g-C3N4 suspension was obtained. Meanwhile, a concept of kinetic energy increment was introduced for the first time to explain the exfoliating efficiency of g-C3N4 nanosheets, which greatly reduced the simulation time by 80% compared with the free energies in terms of the potential of mean force.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    C. Peng, X. Yang, Y. Li, H. Yu, H. Wang, F. Peng, A.C.S. Appl, Mater. Interfaces 8, 6051 (2016)

    CAS  Article  Google Scholar 

  2. 2.

    S.L. Li, L. Zhang, X. Zhong, M. Gobbi, S. Bertolazzi, W. Guo, B. Wu, Y. Liu, N. Xu, W. Niu, Y. Hao, E. Orgiu, P. Samorì, ACS Nano 13, 2654 (2019)

    CAS  PubMed  Google Scholar 

  3. 3.

    Z. Yuan, J.D. Benck, Y. Eatmon, D. Blankschtein, M.S. Strano, Nano Lett. 18, 5057 (2018)

    CAS  Article  Google Scholar 

  4. 4.

    Z. Zhang, N. Li, Y. Sun, H. Yang, X. Zhang, Y. Li, G. Wang, J. Zhou, L. Zou, Z. Hao, A.C.S. Appl, Mater. Interfaces 10, 27205 (2018)

    CAS  Article  Google Scholar 

  5. 5.

    X. Dong, F. Cheng, J. Mater. Chem. A 3, 23642 (2015)

    CAS  Article  Google Scholar 

  6. 6.

    X. Li, K. Xie, L. Song, M. Zhao, Z. Zhang, A.C.S. Appl, Mater. Interfaces 9, 24577 (2017)

    CAS  Article  Google Scholar 

  7. 7.

    Y. Wang, L. Li, Y. Wei, J. Xue, H. Chen, L. Ding, J. Caro, H. Wang, Angew. Chem. Int. Ed. 56, 8974 (2017)

    CAS  Article  Google Scholar 

  8. 8.

    X. Gao, Y. Li, X. Yang, Y. Shang, Y. Wang, B. Gao, Z. Wang, J. Mater. Chem. A 5, 19875 (2017)

    CAS  Article  Google Scholar 

  9. 9.

    H. Zhao, S. Chen, X. Quan, H. Yu, H. Zhao, Appl. Catal. B 194, 134 (2016)

    CAS  Article  Google Scholar 

  10. 10.

    J. Wang, M. Li, M. Qian, S. Zhou, A. Xue, L. Zhang, Y. Zhao, W. Xing, Nanoscale Res. Lett. 13, 248 (2018)

    Article  Google Scholar 

  11. 11.

    Y. Li, R. Jin, Y. Xing, J. Li, S. Song, X. Liu, M. Li, R. Jin, Adv. Energy Mater. 6, 1601273 (2016)

    Article  Google Scholar 

  12. 12.

    X. Du, G. Zou, Z. Wang, X. Wang, Nanoscale 7, 8701 (2015)

    CAS  Article  Google Scholar 

  13. 13.

    K. Zhu, W. Wang, A. Meng, M. Zhao, J. Wang, M. Zhao, D. Zhang, Y. Ji, C. Xu, Z. Li, RSC Adv. 5, 56239 (2015)

    CAS  Article  Google Scholar 

  14. 14.

    L. Ma, H. Fan, M. Li, J. Fang, D. Dong, J. Mater. Chem. A 3, 22404 (2015)

    CAS  Article  Google Scholar 

  15. 15.

    P. Niu, L. Zhang, G. Liu, H. Cheng, Adv. Funct. Mater. 22, 4763 (2012)

    CAS  Article  Google Scholar 

  16. 16.

    Z. Teng, H. Lv, C. Wang, H. Xue, H. Pang, G. Wang, Carbon 113, 63 (2017)

    CAS  Article  Google Scholar 

  17. 17.

    X. She, H. Xu, Y. Xu, J. Yan, J. Xia, L. Xu, Y. Song, Y. Jiang, Q. Zhang, H. Li, J. Mater. Chem. A 2, 2563 (2014)

    CAS  Article  Google Scholar 

  18. 18.

    X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y. Xie, J. Am. Chem. Soc. 135, 18 (2012)

    Article  Google Scholar 

  19. 19.

    Q. Lin, L. Li, S. Liang, M. Liu, J. Bi, L. Wu, Appl. Catal. B 163, 135 (2015)

    CAS  Article  Google Scholar 

  20. 20.

    S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, P.M. Ajayan, Adv. Mater. 25, 2452 (2013)

    CAS  Article  Google Scholar 

  21. 21.

    Z. Zhou, J. Wang, J. Yu, Y. Shen, Y. Li, A. Liu, S. Liu, Y. Zhang, J. Am. Chem. Soc. 137, 2179 (2015)

    CAS  Article  Google Scholar 

  22. 22.

    A. Gupta, V. Arunachalam, S. Vasudevan, J. Phys. Chem. Lett. 7, 4884 (2016)

    CAS  Article  Google Scholar 

  23. 23.

    J. Yang, X. Yang, Y. Li, Curr. Opin. Colloid Interface. Sci. 20, 339 (2015)

    CAS  Article  Google Scholar 

  24. 24.

    T.K. Mukhopadhyay, A. Datta, J. Phys. Chem. C 121, 811 (2016)

    Article  Google Scholar 

  25. 25.

    H. Tang, D. Liu, Y. Zhao, X. Yang, J. Lu, F. Cui, J. Phys. Chem. C 119, 26712 (2015)

    CAS  Article  Google Scholar 

  26. 26.

    C. Fu, X. Yang, Carbon 55, 350 (2013)

    CAS  Article  Google Scholar 

  27. 27.

    S.L. Stephen, B.D. Olafson, W.A. Goddard, J. Phys. Chem. 94, 8897 (1990)

    Article  Google Scholar 

  28. 28.

    X.Y. Zou, M. Li, S. Zhou, C.L. Chen, J. Zhong, A. Xue, Y. Zhang, Y. Zhao, J. Membr. Sci. 585, 81 (2019)

    CAS  Article  Google Scholar 

  29. 29.

    H. Ou, L. Lin, Y. Zheng, P. Yang, Y. Fang, X. Wang, Adv. Mater. 29, 1700008 (2017)

    Article  Google Scholar 

  30. 30.

    C.L. Chen, C.L. Lee, H.L. Chen, J.H. Shih, Macromolecules 27, 7872 (1994)

    CAS  Article  Google Scholar 

  31. 31.

    S.F. Tsai, I.K. Lan, C.L. Chen, Comput. Theor. Polym. Sci. 8, 283 (1998)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the National Natural Science Foundation of China (Grant Nos. 21878118, 21978109), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant Nos. 18KJA530003, 19KJA430011), Natural Science Foundation of Jiangsu Province (Grant No. BK20171268), Jiangsu Province Qing Lan Project, Jiangsu Province Qing Lan Project for the Young Academic Leaders (2021), and the open project program of Jiangsu Key Lab for Chemistry of Low-Dimensional Materials (Grant No. JSKC17005).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yijiang Zhao or Meisheng Li.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zou, X., Zhao, Y., Li, M. et al. Construction of graphitic carbon nitride nanosheets via an improved solvent exfoliation strategy and interfacial mechanics insight from molecular dynamics simulations. J Porous Mater (2021). https://doi.org/10.1007/s10934-021-01047-7

Download citation

Keywords

  • Solvent exfoliation
  • g-C3N4 nanosheets
  • Dispersion
  • Molecular dynamics simulations