A novel quaternary carbon/metal oxide based nano‐composite electrode with high electrochemical capacitive performance


A facile one-pot hydrothermal method is employed to synthesize {CNT–MnO2–Ni(OH)2} (CMN), {rGO–MnO2–Ni(OH)2} (RMN) along with a novel composite material{rGO–CNT–MnO2–Ni(OH)2} (RCMN). This paper first time reports reduced graphene oxide–multiwall carbon nanotube–manganese dioxide–nickel hydroxide rGO–CNT–MnO2–Ni(OH)2 quaternary composite powder as a supercapacitor electrode material. The as-obtained rGO–CNT–MnO2–Ni(OH)2 quaternary composite shows high specific capacitance (1906.4 F g−1) at 3 mV s−1. In addition, cyclic stability measurement reveals that RCMN composite retains admirable capacitance (92.5%) even after 10,000 cycles. The enhancement in cyclic stability and specific capacitance is attributed to the exclusive combination of rGO/CNT as a conductive network and MnO2/Ni(OH) 2 nanostructures as active materials which endorse effective charge transfer and expedites high capacitance and cyclic stability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Data availability

Not applicable.

Code availability

Not applicable.


  1. 1.

    P. Simon, Y. Gogotsi, Materials for electrochemical supercapacitors. Nat. Mater. 7, 845–854 (2008)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    X. Zhao, B.M. Sanchez, P.J. Dobson, P.S. Grant, The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 3(3), 839–855 (2011)

    CAS  Article  Google Scholar 

  3. 3.

    H. Wang, H.S. Casalongue, Y. Liang, H. Dai, Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 132(21), 7472–7477 (2010)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    P. Forouzandeh, V. Kumaravel, S.C. Pillai, Electrode materials for supercapacitors: a review of recent advances. Catalysts 10(9), 969 (2020)

    CAS  Article  Google Scholar 

  5. 5.

    J. Ge, H.-B. Yao, W. Hu, X.–F. Yu, Y.-X. Yan, L.-B. Mao, H.-H. Li, S.-S. Li, S. Yu, Facile dip coating processed graphene/MnO2 nanostructured sponges as high performance supercapacitor electrodes. Nano Energy 2, 505–513 (2013)

    CAS  Article  Google Scholar 

  6. 6.

    Y. Xie, Y. Zhan, Electrochemical capacitance of porous reduced graphene oxide/nickel foam. J. Porous Mater 22, 403–412 (2015)

    CAS  Article  Google Scholar 

  7. 7.

    Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45, 5925–5950 (2016)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    K. Poonam, A. Sharma, S.K. Arora, Tripathi, Review of supercapacitors: materials and devices. J. Energy Storage 21, 801–825 (2019)

    Article  Google Scholar 

  9. 9.

    M.V. Kiamahalleh, C.I. Cheng, S.A. Sata, S. Buniran, S.H.S. Zein, Preparation and capacitive properties of nickel–manganese oxides/multiwalled carbon nanotube/poly (3,4-ethylenedioxythiophene) composite material for electrochemical supercapacitor. J. Appl. Sci. 13, 2346–2351 (2011)

    Article  CAS  Google Scholar 

  10. 10.

    G. Yu, X. Xie, L. Pan, Z. Bao, Y. Cui, Hybrid nanostructured materials for high performance electrochemical capacitors. Nano Energy 2, 213–234 (2013)

    CAS  Article  Google Scholar 

  11. 11.

    L. Hu, W. Chen, X. Xie, N. Liu, Y. Yang, H. Wu, Y. Yao, M. Pasta, H.N. Alshareef, Y. Cui, Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading. ACS Nano 5, 8904–8913 (2011)

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    H.B. Li, M.H. Yu, F.X. Wang, P. Liu, Y. Liang, J. Xiao, C.X. Wang, Y.X. Tong, G.W. Yang, Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat. Commun. 4, 1894 (2013)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    H. Chen, L. Hu, Y. Yan, R. Che, M. Chen, L. Wu, One-step fabrication of ultrathin porous nickel hydroxide manganese dioxide hybrid nanosheets for supercapacitor electrodes with excellent capacitive performance. Adv. Energy Mater. 3, 1636–1646 (2013)

    CAS  Article  Google Scholar 

  14. 14.

    M. Yang, Y. Zhong, L. Su, J. Wei, Z. Zhou, Rational design of Ni nanoparticles on N-rich ultrathin carbon nanosheets for high-performance supercapacitor materials: embedded- versus anchored-type dispersion. Chem. Eur. J. 20, 1–9 (2014)

    Article  Google Scholar 

  15. 15.

    S. Chen, J. Duan, Y. Tang, S.Z. Qiao, Hybrid hydrogels of porous graphene and nickel hydroxide as advanced supercapacitor materials. Chem. Eur. J. 19, 7118–7124 (2013)

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Z. Zhu, Electrochemical properties of Ni(OH)2/MnO2 on hybrid N-doped carbon structure as high-performance electrode material. AIP Adv. 8, 075223 (2018)

    Article  CAS  Google Scholar 

  17. 17.

    Z. Tang, C.-H. Tang, H. Gong, A high energy density asymmetric supercapacitor from nano architectured Ni(OH)2/nanotube electrodes. Adv. Funct. Mater. 22, 1272–1278 (2012)

    CAS  Article  Google Scholar 

  18. 18.

    V. Mani, B. Devedas, S.-M. Chen, Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide-multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor. Biosens. Bioelectron. 41, 309–315 (2013)

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    A.C.D. Brownson, D.K. Kampouris, C.E. Banks, An overview of graphene in energy production and storage applications. J. Power Sources 196(11), 4873–4885 (2011)

    CAS  Article  Google Scholar 

  20. 20.

    X. Wang, G. Sun, P. Chen, Three-dimensional porous architectures of carbon nanotubes and graphene sheets for energy applications. Front. Energy Res 2, 33 (2014)

    Google Scholar 

  21. 21.

    X. Chen, X. Chen, F. Zhang, Z. Yang, S. Huang, One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/a-Ni(OH)2 composites for high performance electrochemical supercapacitor. J. Power Sources 243, 555–561 (2013)

    CAS  Article  Google Scholar 

  22. 22.

    Y. Kang, F. Cai, H. Chen, M. Chen, R. Zhang, Q. Li, Porous reduced graphene oxide wrapped carbon nanotube-manganese dioxide nanocables with enhanced electrochemical capacitive performance. RSC Adv. 5, 6136–6141 (2015)

    CAS  Article  Google Scholar 

  23. 23.

    S. Woo, Y.-R. Kim, T.D. Chung, Y. Piao, H. Kim, Synthesis of a graphene–carbon nanotube composite and its electrochemical sensing of hydrogen peroxide. Electrochim. Acta 59, 509–514 (2012)

    CAS  Article  Google Scholar 

  24. 24.

    Y. Cai, Y. Wang, S. Deng, G. Chen, Q. Li, B. Han, R. Han, Y. Wang, Graphene nanosheets-tungsten oxides composite for supercapacitor electrode. Ceram. Int. 40, 4109–4116 (2014)

    CAS  Article  Google Scholar 

  25. 25.

    Y. Wang, Y. Li, L. Tang, J. Lu, J. Li, Application of graphene-modified electrode for selective detection of dopamine. Electrochem. Commun. 11, 889–892 (2009)

    CAS  Article  Google Scholar 

  26. 26.

    E. Adelowo, A.R. Baboukani, C. Chen, C. Wang, Electrostatically sprayed reduced graphene oxide carbon nanotubes electrodes for lithium-ion capacitors. J. Carbon Res. 4(2), 31 (2018)

    Article  Google Scholar 

  27. 27.

    L. Aguilera, Y. Leyet, R. Pena-Garcia, E. Pardon-Hernandez, R.R. Passos, L.A. Pocrifka, Cabbage-like α-Ni(OH)2 with a good long-term cycling stability and high electrochemical performances for supercapacitor applications. Chem. Phys. Lett. 677, 75–79 (2017)

    CAS  Article  Google Scholar 

  28. 28.

    L. Feng, Z. Xuan, H. Zhao, Y. Bai, J. Guo, C.-W. Su, X. Chen, MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery. Nano Res. Lett. 9, 290 (2014)

    Article  CAS  Google Scholar 

  29. 29.

    K. Chen, M. Wang, G. Li, Q. He, J. Liu, F. Li, Spherical α-MnO2 supported on N-KB as efficient electrocatalyst for oxygen reduction in Al–air battery. Materials (Basel) 11(4), 601 (2018)

    Article  CAS  Google Scholar 

  30. 30.

    M. Chen, J. Shu, Z. Wang, C. Ren, Porous surface MnO2 microspheres as oxidase mimetics for colorimetric detection of sulfite. J. Porous Mater. 24, 973–977 (2017)

    CAS  Article  Google Scholar 

  31. 31.

    S. Gurunathan, J. Woong Han, A.A. Dayem, V. Eppakayala, J.-H. Kim, Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int. J. Nanomed. 7, 5901–5914 (2012)

    CAS  Article  Google Scholar 

  32. 32.

    L. Bokobza, J. Zhang, Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. eXPRESS Polym. Lett. 6, 601–608 (2012)

    CAS  Article  Google Scholar 

  33. 33.

    N. Jiang, F. Huang, W. Xia, J. Wei, L. Zhou, Z. Huo, Q. Pang, Facile fabrication of rGO/CNT hybrid fibers for high performance flexible supercapacitors. J. Mater. Sci. Mater. Electron. 28, 12147–12157 (2017)

    CAS  Article  Google Scholar 

  34. 34.

    S. Cheng, L. Yang, D. Chen, X. Ji, Z. Jiang, D. Ding, M. Liu, Phase evolution of an alpha MnO2-based electrode for pseudo-capacitors probed by in operando Raman spectroscopy. Nano Energy 9, 161–167 (2014)

    CAS  Article  Google Scholar 

  35. 35.

    R. Janani, B.H. Ong, N.M. Huang, S. Bashardoust, E.M.J.K. Gan, Formation of chemically synthesized manganese oxide nanostructures with various morphologies. Mater. Res. Innov. 18, 449–452 (2014)

    Article  Google Scholar 

  36. 36.

    J. Wang, Z. Wang, Z. Zhu, Synergetic effect of Ni(OH)2 cocatalyst and CNT for high hydrogen generation on CdS quantum dot sensitized TiO2 photocatalyst. Appl. Catal. B 204, 577–583 (2017)

    CAS  Article  Google Scholar 

  37. 37.

    R.S. Kalubarme, M.-S. Cho, K.-S. Yun, T.-S. Kim, C.-J. Park, Catalytic characteristics of MnO2 nanostructures for the O2 reduction process. Nanotechnology 22, 395402–395408 (2011)

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    R.A. Davoglio, G. Cabello, J.F. Marco, S.R. Biaggio, Synthesis and characterization of α-MnO2 nanoneedles for electrochemical supercapacitors. Electrochim. Acta 261, 428–435 (2018)

    CAS  Article  Google Scholar 

  39. 39.

    J.-X. Song, X. Fang, T. Guo, F.L. Bei, W. Ding, X.-N. Zhang, M. Yao, H.-J. Yu, Thermal properties and kinetics of Al/α-MnO2 nanostructure thermite. J. Braz. Chem. Soc. 29, 404–411 (2018)

    CAS  Google Scholar 

  40. 40.

    M. Xie, S. Duan, Y. Shen, K. Fang, Y. Wang, M. Lin, X. Guo, In situ grown Mg(OH)2-derived hybrid α-Ni(OH)2 for highly stable supercapacitor. ACS Energy Lett. 4, 814–819 (2016)

    Article  CAS  Google Scholar 

  41. 41.

    X. Chen, C. Long, C. Lin, T. Wei, J. Yan, L. Jiang, Z. Fan, Al and Co codoped α-Ni(OH)2/graphene hybrid materials with high electrochemical performances for supercapacitors. Electrochim. Acta 137, 352–358 (2014)

    CAS  Article  Google Scholar 

  42. 42.

    W. Wang, Q. Hao, W. Lei, X. Xia, X. Wang, Ternary nitrogen-doped graphene/nickel ferrite/polyaniline nanocomposites for high-performance supercapacitors. J. Power Sources 269, 250–259 (2014)

    CAS  Article  Google Scholar 

  43. 43.

    W. Jiang, D. Yu, Q. Zhang, K. Goh, L. Wei, Y. Yong, R. Jiang, J. Wei, Y. Chen, Ternary hybrids of amorphous nickel hydroxide-carbon nanotube-conducting polymer for supercapacitors with high energy density, excellent rate capability, and long cycle life. Adv. Funct. Mater. 25, 1063–1073 (2015)

    CAS  Article  Google Scholar 

  44. 44.

    G. Zhu, Z. He, J. Chen, J. Zhao, X. Feng, Y. Ma, Q. Fan, L. Wang, Highly conductive three- dimensional MnO2-Carbon Nanotube-Graphene-Ni hybrid foam as a binder-free supercapacitor electrode. Nanoscale 6, 1079–1085 (2014)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    A.W. Anwar, A. Majeed, N. Iqbal, W. Ullah, A. Shoaib, U. Ilyas, F. Bibi, H.M. Rafique, Specific capacitance and cyclic stability of graphene based metal/metal oxide nanocomposites: a review. J. Mater. Sci. Technol. 31, 699–707 (2015)

    CAS  Article  Google Scholar 

  46. 46.

    S.-Gi. Hwang, J.-E. Hong, G.-O. Kim, H.M. Jeong, K.-S. Ryu, Graphene anchored with NiO–MnO2 nanocomposites for use as an electrode material in supercapacitors. ECS Solid State Lett. 2(1), M8–M11 (2013)

    CAS  Article  Google Scholar 

  47. 47.

    I. Kaushal, A.K. Sharma, P. Saharan, K.K. Sadasivuni, S. Duhan, Superior architecture and electrochemical performance of MnO2 doped PANI/CNT graphene fastened composite. J. Porous Mater. 26, 1287–1296 (2019)

    CAS  Article  Google Scholar 

  48. 48.

    H. Chen, S. Zhou, L. Wu, Porous nickel hydroxide–manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials. Appl. Mater. Interfaces 6, 8621–8630 (2014)

    CAS  Article  Google Scholar 

  49. 49.

    D.P. Dubal, R. Holze, G. Romero, Development of hybrid materials based on sponge supported reduced graphene oxide and transition metal hydroxides for hybrid energy storage devices. Sci. Rep. 8, 7349 (2014)

    Google Scholar 

Download references


We thank Dr. Muhammad Awais Javed for his assistance in the electrochemical characterization.


This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information



Corresponding author

Correspondence to Abdul Waheed Anwar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nasreen, F., Anwar, A.W., Majeed, A. et al. A novel quaternary carbon/metal oxide based nano‐composite electrode with high electrochemical capacitive performance. J Porous Mater (2021). https://doi.org/10.1007/s10934-021-01043-x

Download citation


  • Reduced graphene oxide
  • Metal oxide nanostructures
  • Carbon nanotubes
  • Composite electrode
  • Supercapacitor