Skip to main content

Advertisement

Log in

Effective adsorption of ciprofloxacin antibiotic using powdered activated carbon magnetized by iron(III) oxide magnetic nanoparticles

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In the present work, the adsorption performance of powdered activated carbon magnetized by iron(III) oxide magnetic nanoparticles (PAC@Fe3O4-MN) for the removal of ciprofloxacin (CIP) was extensively studied using batch experiments. First, PAC@Fe3O4-MN was synthesized and prepared by co-precipitation method, then it was subjected to characterization study using advanced techniques. Then, the adsorption ability of PAC@Fe3O4-MN for CIP was determined at different initial CIP concentration (10–100 mg/L), pH (3–11), PAC@Fe3O4-MN dose (0.1–0.6 g/L), shaking speed (50–300 rpm), contact time (0–120 min) and temperature (283–328 K). Results showed that PAC@Fe3O4-MN possessed excellent adsorptive properties and had a high practical utility. It was found that PAC particles were partially covered during the magnetization by Fe3O4-MN whereas the surface and morphological properties of both were detected in the characterization analysis of PAC@Fe3O4-MN. Values of the thermodynamic and isotherm parameters (negative \(\Delta {G}^{o}\); positive \(\Delta {H}^{o}\), and values of KF and B) indicated that CIP adsorption process onto PAC@Fe3O4-MN was favorable, spontaneous and endothermic. Kinetic and isotherm studies manifested that the interaction of CIP with PAC@Fe3O4-MN occurs via both chemical and physical reactions onto a single and homogeneous layer of active sites of PAC@Fe3O4-MN. Furthermore, the rate-controlling step of the kinetic reaction is dominated and controlled by film diffusion for all CIP concentrations that studied. PAC@Fe3O4-MN possessed an excellent adsorption capacity for CIP (109.833 mg/g at pH  7, PAC@Fe3O4-MN dose = 1 g/L, shaking speed = 200 rpm, initial CIP concentration = 100 mg/L, contact time = 60 min, and temperature = 298 K). Finally, the used adsorbent appeared to be sustainable and cost-effective for treatment of CIP laden wastewater, as it can be successfully recycled up to eight consecutive adsorption–desorption cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. N. Nasseh, T.J. Al-Musawi, M.R. Miri, S. Rodriguez-Couto, A. Hossein Panahi, A comprehensive study on the application of FeNi3@SiO2@ZnO magnetic nanocomposites as a novel photo-catalyst for degradation of tamoxifen in the presence of simulated sunlight. Environ. Pollut. 261, 114127 (2020)

    Article  CAS  PubMed  Google Scholar 

  2. W. Liu, H. Xie, J. Zhang, C. Zhang, Sorption removal of cephalexin by HNO3 and H2O2 oxidized activated carbons. Sci. China Chem. 55(9), 1959–1967 (2012)

    Article  CAS  Google Scholar 

  3. D.C. Speksnijder, D.J. Mevius, C.J. Bruschke, J.A. Wagenaar, Reduction of veterinary antimicrobial use in the Netherlands. The Dutch success model, zoonoses. Public Health 62(Suppl 1), 79–87 (2015)

    Google Scholar 

  4. K.L. Tang, N.P. Caffrey, D.B. Nóbrega, S.C. Cork, P.E. Ronksley, H.W. Barkema, A.J. Polachek, H. Ganshorn, N. Sharma, J.D. Kellner, W.A. Ghali, Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: a systematic review and meta-analysis. Lancet Planet Health. 1(8), e316–e327 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  5. A. Gulkowska, H.W. Leung, M.K. So, S. Taniyasu, N. Yamashita, L.W.Y. Yeung, B.J. Richardson, A.P. Lei, J.P. Giesy, P.K.S. Lam, Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China. Water Res. 42(1), 395–403 (2008)

    Article  CAS  PubMed  Google Scholar 

  6. A.A. Mohammed, M.A. Atiya, M.A. Hussein, Studies on membrane stability and extraction of ciprofloxacin from aqueous solution using pickering emulsion liquid membrane stabilized by magnetic nano-Fe2O3. Colloids Surf. A Physicochem. Eng. Asp. 585, 124044 (2020)

    Article  CAS  Google Scholar 

  7. K. Kümmerer, Antibiotics in the aquatic environment—a review—part I. Chemosphere 75(4), 417–434 (2009)

    Article  PubMed  CAS  Google Scholar 

  8. M.M. Soori, E. Ghahramani, H. Kazemian, T.J. Al-Musawi, M. Zarrabi, Intercalation of tetracycline in nano sheet layered double hydroxide: an insight into UV/VIS spectra analysis. J Taiwan Inst Chem Eng. 63, 271–285 (2016)

    Article  CAS  Google Scholar 

  9. A. Mohseni-Bandpi, T.J. Al-Musawi, E. Ghahramani, M. Zarrabi, S. Mohebi, S.A. Vahed, Improvement of zeolite adsorption capacity for cephalexin by coating with magnetic Fe3O4 nanoparticles. J. Mol. Liq. 218, 615–624 (2016)

    Article  CAS  Google Scholar 

  10. Z. Aksu, Ö. Tunç, Application of biosorption for penicillin G removal: comparison with activated carbon. Process Biochem. 40(2), 831–847 (2005)

    Article  CAS  Google Scholar 

  11. M. Amini, M. Khanavi, A. Shafiee, Simple high-performance liquid chromatographic method for determination of ciprofloxacin in human plasma. Iran. J. Pharm. Sci. 3(2), 99–101 (2010)

    Google Scholar 

  12. J.B. Parsa, T.M. Panah, F.N. Chianeh, Removal of ciprofloxacin from aqueous solution by a continuous flow electro-coagulation process. Korean J. Chem. Eng. 33(3), 893–901 (2016)

    Article  CAS  Google Scholar 

  13. S. Ahmadi, A. Banach, F.K. Mostafapour, D. Balarak, Study survey of cupric oxide nanoparticles in removal efficiency of ciprofloxacin antibiotic from aqueous solution: adsorption isotherm study. Desalin. Water Treat. 89, 297–303 (2017)

    Article  CAS  Google Scholar 

  14. D. Balarak, F. Mostafapour, H. Azarpira, Adsorption isotherm studies of tetracycline antibiotics from aqueous solutions by maize stalks as a cheap biosorbent. Int. J. Pharm. Technol. 8(3), 16664–16675 (2016)

    CAS  Google Scholar 

  15. P.-H. Chang, Z. Li, J.-S. Jean, W.-T. Jiang, C.-J. Wang, K.-H. Lin, Adsorption of tetracycline on 2:1 layered non-swelling clay mineral illite. Appl. Clay Sci. 67–68, 158–163 (2012)

    Article  CAS  Google Scholar 

  16. J. Gao, J.A. Pedersen, Adsorption of sulfonamide antimicrobial agents to clay minerals. Environ. Sci. Technol. 39(24), 9509–9516 (2005)

    Article  CAS  PubMed  Google Scholar 

  17. H. Azarpira, D. Balarak, Rice husk as a biosorbent for antibiotic metronidazole removal: Isotherm studies and model validation. Int. J. Chemtech Res. 9(7), 566–573 (2016)

    CAS  Google Scholar 

  18. D. Balarak, F.K. Mostafapour, Photocatalytic degradation of amoxicillin using UV/Synthesized NiO from pharmaceutical wastewater. Indonesian J. Chem. 19(1), 211–218 (2019)

    Article  CAS  Google Scholar 

  19. M.-F. Li, Y.-G. Liu, S.-B. Liu, D. Shu, G.-M. Zeng, X.-J. Hu, X.-F. Tan, L.-H. Jiang, Z.-L. Yan, X.-X. Cai, Cu(II)-influenced adsorption of ciprofloxacin from aqueous solutions by magnetic graphene oxide/nitrilotriacetic acid nanocomposite: competition and enhancement mechanisms. Chem. Eng. J. 319, 219–228 (2017)

    Article  CAS  Google Scholar 

  20. K. Yaghmaeian, G. Moussavi, A. Alahabadi, Removal of amoxicillin from contaminated water using NH4Cl-activated carbon: Continuous flow fixed-bed adsorption and catalytic ozonation regeneration. Chem. Eng. J. 236, 538–544 (2014)

    Article  CAS  Google Scholar 

  21. R. Ding, P. Zhang, M. Seredych, T.J. Bandosz, Removal of antibiotics from water using sewage sludge- and waste oil sludge-derived adsorbents. Water Res. 46(13), 4081–4090 (2012)

    Article  CAS  PubMed  Google Scholar 

  22. S. Guiza, Biosorption of heavy metal from aqueous solution using cellulosic waste orange peel. Ecol. Eng. 99, 134–140 (2017)

    Article  Google Scholar 

  23. S. Guiza, L. Franckb, M. Baganéa, Adsorption of dyes from aqueous solution under batch mode using cellulosic orange peel waste. Desalin. Water Treat. 113, 262–269 (2018)

    Article  CAS  Google Scholar 

  24. T.X. Bui, H. Choi, Adsorptive removal of selected pharmaceuticals by mesoporous silica SBA-15. J. Hazard Mater. 168(2–3), 602–608 (2009)

    Article  CAS  PubMed  Google Scholar 

  25. S.M. Al-Jubouri, D.A. de Haro-Del Rio, A. Alfutimie, N.A. Curry, S.M. Holmes, Understanding the seeding mechanism of hierarchically porous zeolite/carbon composites. Microporous Mesoporous Mater. 268, 109–116 (2018)

    Article  CAS  Google Scholar 

  26. A.H. Mahvi, F.K. Mostafapour, D. Balarak, Biosorption of tetracycline from aqueous solution by azolla filiculoides: equilibrium kinetic and thermodynamics studies. Fresenius Environ. Bull. 27(8), 5759–5767 (2018)

    CAS  Google Scholar 

  27. M.-H. To, P. Hadi, C.-W. Hui, C.S.K. Lin, G. McKay, Mechanistic study of atenolol, acebutolol and carbamazepine adsorption on waste biomass derived activated carbon. J. Mol. Liq. 241, 386–398 (2017)

    Article  CAS  Google Scholar 

  28. S.T. Danalıoğlu, ŞS. Bayazit, Ö. Kerkez Kuyumcu, M.A. Salam, Efficient removal of antibiotics by a novel magnetic adsorbent: Magnetic activated carbon/chitosan (MACC) nanocomposite. J. Mol. Liq. 240, 589–596 (2017)

    Article  CAS  Google Scholar 

  29. S. Li, X. Zhang, Y. Huang, Zeolitic imidazolate framework-8 derived nanoporous carbon as an effective and recyclable adsorbent for removal of ciprofloxacin antibiotics from water. J. Hazard. Mater. 321, 711–719 (2017)

    Article  CAS  PubMed  Google Scholar 

  30. F. Wang, B. Yang, H. Wang, Q. Song, F. Tan, Y. Cao, Removal of ciprofloxacin from aqueous solution by a magnetic chitosan grafted graphene oxide composite. J. Mol. Liq. 222, 188–194 (2016)

    Article  CAS  Google Scholar 

  31. S. Qu, J. Wang, J. Kong, P. Yang, G. Chen, Magnetic loading of carbon nanotube/nano-Fe3O4 composite for electrochemical sensing. Talanta 71(3), 1096–1102 (2007)

    Article  CAS  PubMed  Google Scholar 

  32. A.A. Mohammed, F. Brouers, S. Isra’a Sadi, T.J. Al-Musawi, Role of Fe3O4 magnetite nanoparticles used to coat bentonite in zinc(II) ions sequestration. Environ. Nanotechnol. Monit. Manag. 10, 17–27 (2018)

    Google Scholar 

  33. B. Kakavandi, A. Jonidi, R. Rezaei, S. Nasseri, A. Ameri, A. Esrafily, Synthesis and properties of Fe3O4-activated carbon magnetic nanoparticles for removal of aniline from aqueous solution: equilibrium, kinetic and thermodynamic studies. IJEHSE. 10(1), 19 (2013)

    PubMed  PubMed Central  Google Scholar 

  34. A.J. Jafari, B. Kakavandi, R.R. Kalantary, H. Gharibi, A. Asadi, A. Azari, A.A. Babaei, A. Takdastan, Application of mesoporous magnetic carbon composite for reactive dyes removal: process optimization using response surface methodology. Korean J Chem Eng. 33(10), 2878–2890 (2016)

    Article  CAS  Google Scholar 

  35. M. Yegane Badi, A. Azari, H. Pasalari, A. Esrafili, M. Farzadkia, Modification of activated carbon with magnetic Fe3O4 nanoparticle composite for removal of ceftriaxone from aquatic solutions. J. Mol. Liq. 261, 146–154 (2018)

    Article  CAS  Google Scholar 

  36. M. Badi, A. Azari, A. Esrafili, E. Ahmadi, M. Gholami, Performance evaluation of magnetized multiwall carbon nanotubes by iron oxide nanoparticles in removing fluoride from aqueous solution. J. Mazandaran Univ. Med. Sci. 25(124), 128–142 (2015)

    Google Scholar 

  37. Y. Sun, H. Li, G. Li, B. Gao, Q. Yue, X. Li, Characterization and ciprofloxacin adsorption properties of activated carbons prepared from biomass wastes by H3PO4 activation. Bioresource Technol. 217, 239–244 (2016)

    Article  CAS  Google Scholar 

  38. M. Khodadadi, T.J. Al-Musawi, M. Kamranifar, M.H. Saghi, A. Hossein Panahi, A comparative study of using barberry stem powder and ash as adsorbents for adsorption of humic acid. Environ. Sci. Pollut. Res. 26(25), 26159–26169 (2019)

    Article  CAS  Google Scholar 

  39. A.A. Mohammed, T.J. Al-Musawi, S.L. Kareem, M. Zarrabi, A.M. Al-Ma’abreh, Simultaneous adsorption of tetracycline, amoxicillin, and ciprofloxacin by pistachio shell powder coated with zinc oxide nanoparticles. Arab. J. Chem. 13(3), 4629–4643 (2020)

    Article  CAS  Google Scholar 

  40. K. Zare, V.K. Gupta, O. Moradi, A.S.H. Makhlouf, M. Sillanpää, M.N. Nadagouda, H. Sadegh, R. Shahryari-ghoshekandi, A. Pal, Z.-J. Wang, I. Tyagi, M. Kazemi, A comparative study on the basis of adsorption capacity between CNTs and activated carbon as adsorbents for removal of noxious synthetic dyes: a review. J Nanostruct Chem. 5(2), 227–236 (2015)

    Article  CAS  Google Scholar 

  41. C.-L. Zhang, F. Zhao, Y. Wang, Thermodynamics of the solubility of ciprofloxacin in methanol, ethanol, 1-propanol, acetone, and chloroform from 293.15 to 333.15K. J. Mol. Liq. 156(2), 191–193 (2010)

    Article  CAS  Google Scholar 

  42. A. Al-Fatesh, A. Fakeeha, Effects of calcination and activation temperature on dry reforming catalysts. J. Saudi Chem. Soc. 16(1), 55–61 (2012)

    Article  CAS  Google Scholar 

  43. J. Ma, J. Chu, L. Qiang, J. Xue, Effect of different calcination temperatures on the structural and photocatalytic performance of Bi-TiO2/SBA-15. Int. J. Photoenergy. 2013, 875456 (2013)

    Article  Google Scholar 

  44. Z.-X. Chen, X.-Y. Jin, Z. Chen, M. Megharaj, R. Naidu, Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron. J. Colloid Interface Sci. 363(2), 601–607 (2011)

    Article  CAS  PubMed  Google Scholar 

  45. B. Kakavandi, A. Esrafili, A. Mohseni-Bandpi, A. Jonidi Jafari, R. Rezaei Kalantary, Magnetic Fe3O4@C nanoparticles as adsorbents for removal of amoxicillin from aqueous solution. Water Sci Technol. 69(1), 147–155 (2014)

    Article  CAS  PubMed  Google Scholar 

  46. R. Egerton, Physical Principles of Electron Microscopy (Springer, Berlin, 2005).

    Book  Google Scholar 

  47. H. Liu, W. Liu, J. Zhang, C. Zhang, L. Ren, Y. Li, Removal of cephalexin from aqueous solutions by original and Cu(II)/Fe(III) impregnated activated carbons developed from lotus stalks Kinetics and equilibrium studies. J. Hazard. Mater. 185(2), 1528–1535 (2011)

    Article  CAS  PubMed  Google Scholar 

  48. I.S.I.S.C.O.C. Zawadzki, J. Chem. Phys. Carbon 21, 147–386 (1989)

    CAS  Google Scholar 

  49. L. Zhang, X. Song, X. Liu, L. Yang, F. Pan, J. Lv, Studies on the removal of tetracycline by multi-walled carbon nanotubes. Chem. Eng. J. 178, 26–33 (2011)

    Article  CAS  Google Scholar 

  50. D. Balarak, F. Mostafapour, E. Bazrafshan, T.A. Saleh, Studies on the adsorption of amoxicillin on multi-wall carbon nanotubes. Water Sci. Technol. 75(7–8), 1599–1606 (2017)

    Article  CAS  PubMed  Google Scholar 

  51. V.K. Upadhyayula, S. Deng, M.C. Mitchell, G.B. Smith, Application of carbon nanotube technology for removal of contaminants in drinking water: a review. Sci. Total Environ. 408(1), 1–13 (2009)

    Article  CAS  PubMed  Google Scholar 

  52. A.I. Alwared, T.J. Al-Musawi, L.F. Muhaisn, A.A. Mohammed, The biosorption of reactive red dye onto orange peel waste: a study on the isotherm and kinetic processes and sensitivity analysis using the artificial neural network approach. Environ. Sci. Pollut. Res. 28(3), 2848–2859 (2021)

    Article  CAS  Google Scholar 

  53. M. Dutta, N.N. Dutta, K.G. Bhattacharya, Aqueous phase adsorption of certain beta-lactam antibiotics onto polymeric resins and activated carbon. Sep. Purif. Technol. 16(3), 213–224 (1999)

    Article  CAS  Google Scholar 

  54. M. Erşan, E. Bağda, E. Bağda, Investigation of kinetic and thermodynamic characteristics of removal of tetracycline with sponge like, tannin based cryogels. Colloids Surf B Biointerfaces. 104, 75–82 (2013)

    Article  PubMed  CAS  Google Scholar 

  55. S.-X. Zhao, N. Ta, X.-D. Wang, Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material. Energies. 10(9), 1293 (2017)

    Article  CAS  Google Scholar 

  56. Y. Gao, Y. Li, L. Zhang, H. Huang, J. Hu, S.M. Shah, X. Su, Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J. Colloid Interface Sci. 368(1), 540–546 (2012)

    Article  CAS  PubMed  Google Scholar 

  57. U.A. Guler, M. Sarioglu, Removal of tetracycline from wastewater using pumice stone: equilibrium, kinetic and thermodynamic studies. J Environ Health Sci Eng. 12, 79–79 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. A.A. Mohammed, A.A. Najim, T.J. Al-Musawi, A.I. Alwared, Adsorptive performance of a mixture of three nonliving algae classes for nickel remediation in synthesized wastewater. J. Environ. Health Sci. Eng. 17(2), 529–538 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. S. Carabineiro, T. Thavorn-Amornsri, M. Pereira, J. Figueiredo, Adsorption of ciprofloxacin on surface-modified carbon materials. Water Res. 45(15), 4583–4591 (2011)

    Article  CAS  PubMed  Google Scholar 

  60. F. Yu, Y. Li, S. Han, J. Ma, Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere 153, 365–385 (2016)

    Article  CAS  PubMed  Google Scholar 

  61. H. Azarpira, Y. Mahdavi, O. Khaleghi, D. Balarak, Thermodynamic studies on the removal of metronidazole antibiotic by multi-walled carbon nanotubes. Der Pharm lettre. 8(11), 107–113 (2016)

    CAS  Google Scholar 

  62. F. Brouers, T.J. Al-Musawi, Brouers-Sotolongo fractal kinetics versus fractional derivative kinetics: a new strategy to analyze the pollutants sorption kinetics in porous materials. J. Hazard. Mater. 350, 162–168 (2018)

    Article  CAS  PubMed  Google Scholar 

  63. T.J. Al-Musawi, F. Brouers, M. Zarrabi, Kinetic modeling of antibiotic adsorption onto different nanomaterials using the Brouers-Sotolongo fractal equation. Environ. Sci. Pollut. Res. 24(4), 4048–4057 (2017)

    Article  CAS  Google Scholar 

  64. T.J. Al-Musawi, F. Brouers, M. Zarrabi, R. Noroozi, What can the use of well-defined statistical functions of pollutants sorption kinetics teach us? A case study of cyanide sorption onto LTA zeolite nanoparticles. Environ. Technol. Innov. 10, 46–54 (2018)

    Article  Google Scholar 

  65. S. Guiza, H. Hajji, M. Bagane, External mass transport process during the adsorption of fluoride from aqueous solution by activated clay. C. R. Chim. 22(2), 161–168 (2019)

    Article  CAS  Google Scholar 

  66. F. Brouers, T.J. Al-Musawi, The use of the Brouers-Sotolongo fractal kinetic equation for the study of drug release. Adsorption. 26(6), 843–853 (2020)

    Article  CAS  Google Scholar 

  67. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes. Process Biochem. 34(5), 451–465 (1999)

    Article  CAS  Google Scholar 

  68. D. Balarak, F. Mostafapour, H. Azarpira, Adsorption kinetics and equilibrium of ciprofloxacin from aqueous solutions using corylus avellana (Hazelnut) activated carbon. Brit. J. Pharm. Res. 13(3), 1–14 (2016)

    Article  CAS  Google Scholar 

  69. J. Pan, H. Yao, W. Guan, H. Ou, P. Huo, X. Wang, X. Zou, C. Li, Selective adsorption of 2,6-dichlorophenol by surface imprinted polymers using polyaniline/silica gel composites as functional support: Equilibrium, kinetics, thermodynamics modeling. Chem. Eng. J. 172(2), 847–855 (2011)

    Article  CAS  Google Scholar 

  70. S. Guiza, F. Brouers, M. Bagane, Fluoride removal from aqueous solution by montmorillonite clay: kinetics and equilibrium modeling using new generalized fractal equation. Environ. Technol. Innov. (2020). https://doi.org/10.1016/j.eti.2020.101187

    Article  Google Scholar 

  71. S.M. Al-Jubouri, N.A. Curry, S.M. Holmes, Hierarchical porous structured zeolite composite for removal of ionic contaminants from waste streams and effective encapsulation of hazardous waste. J. Hazard. Mater. 320, 241–251 (2016)

    Article  CAS  PubMed  Google Scholar 

  72. A.A. Mohammed, F.I. Abed, T.J. Al-Musawi, Biosorption of Pb(II) from aqueous solution by spent black tea leaves and separation by flotation. Desalin. Water Treat. 57(5), 2028–2039 (2016)

    Article  CAS  Google Scholar 

  73. S.M. Al-Jubouri, S.M. Holmes, Immobilization of cobalt ions using hierarchically porous 4A zeolite-based carbon composites: Ion-exchange and solidification. J. Water Process. Eng. 33, 101059 (2020)

    Article  Google Scholar 

  74. F. Brouers, T.J. Al-Musawi, On the optimal use of isotherm models for the characterization of biosorption of lead onto algae. J. Mol. Liq. 212, 46–51 (2015)

    Article  CAS  Google Scholar 

  75. F.H. Kamar, A.C. Nechifor, G. Nechifor, T.J. Al-Musawi, A.H. Mohammed, Aqueous phase biosorption of Pb (II), Cu (II), and Cd (II) onto cabbage leaves powder. Int. J. Chem. React. Eng. (2017). https://doi.org/10.1515/ijcre-2015-0178

    Article  Google Scholar 

  76. D. Balarak, T.J. Al-Musawi, I.A. Mohammed, H. Abasizadeh, The eradication of reactive black 5 dye liquid wastes using Azolla filiculoides aquatic fern as a good and an economical biosorption agent. SN Appl. Sci. 2(6), 1015 (2020)

    Article  CAS  Google Scholar 

  77. M.H. Alhassani, S.M. Al-Jubouri, H.A. Al-Jendeel, Stabilization of phenol trapped by agricultural waste: a study of the influence of ambient temperature on the adsorbed phenol. Desalin Water Treat. 187, 266–276 (2020)

    Article  CAS  Google Scholar 

  78. N. Nasseh, R. Khosravi, G.A. Rumman, M. Ghadirian, H. Eslami, M. Khoshnamvand, T.J. Al-Musawi, A. Khosravi, Adsorption of Cr(VI) ions onto powdered activated carbon synthesized from Peganum harmala seeds by ultrasonic waves activation. Environ. Technol. Innov. 21, 101277 (2021)

    Article  CAS  Google Scholar 

  79. W. Liu, J. Zhang, C. Zhang, L. Ren, Sorption of norfloxacin by lotus stalk-based activated carbon and iron-doped activated alumina: Mechanisms, isotherms and kinetics. Chem. Eng. J. 171(2), 431–438 (2011)

    Article  CAS  Google Scholar 

  80. Y. Zhao, F. Tong, X. Gu, C. Gu, X. Wang, Y. Zhang, Insights into tetracycline adsorption onto goethite: experiments and modeling. Sci. Total Environ. 470–471, 19–25 (2014)

    Article  PubMed  CAS  Google Scholar 

  81. C. Nguyen, D.D. Do, The Dubinin-Radushkevich equation and the underlying microscopic adsorption description. Carbon 39(9), 1327–1336 (2001)

    Article  CAS  Google Scholar 

  82. N. Dhiman, N. Sharma, Batch adsorption studies on the removal of ciprofloxacin hydrochloride from aqueous solution using ZnO nanoparticles and groundnut (Arachis hypogaea) shell powder: a comparison. Indian Chem. Eng. (2018). https://doi.org/10.1080/00194506.2018.1424044

    Article  Google Scholar 

  83. N. Khoshnamvand, S. Ahmadi, F.K. Mostafapour, Kinetic and isotherm studies on ciprofloxacin an adsorption using magnesium oxide nanopartices. J. Appl. Pharm. Sci. 7(11), 79–83 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Zahedan University of Medical Sciences, Zahedan, Iran.

Author information

Authors and Affiliations

Authors

Contributions

TJA-M: Writing, Review, Editing, and Supervision. AHM: Writing, Results, Discussion, and Experiments. ADK: Methodology, and Data analysis. DB: Editing, Methodology, Data analysis, and Project administration.

Corresponding author

Correspondence to Davoud Balarak.

Ethics declarations

Competing of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the study reported in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Musawi, T.J., Mahvi, A.H., Khatibi, A.D. et al. Effective adsorption of ciprofloxacin antibiotic using powdered activated carbon magnetized by iron(III) oxide magnetic nanoparticles. J Porous Mater 28, 835–852 (2021). https://doi.org/10.1007/s10934-021-01039-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01039-7

Keywords

Navigation