Skip to main content
Log in

Green fabrication of flexible aerogels from polypropylene fibers for heat insulation and oil/water separation

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

For the first time, hydrophobic polymer-based aerogels have been developed from polypropylene fibers for heat insulation and oil spill treatments. By physically cross-linking polypropylene fibers with non-toxic polyvinyl alcohol and carboxymethyl cellulose, followed by eco-friendly freeze–drying method, the fabricated aerogels exhibit an extremely low density of 0.024–0.054 g/cm3 and a high porosity of 94.71–97.82%. The developed polypropylene aerogels express excellent flexibility and good heat insulation with remarkably low compressive modulus and thermal conductivity of 27.54–58.58 kPa and 0.036–0.039 W/m.K, respectively. Experimental results have demonstrated that methyltrimethoxysilane-coated PP aerogels have great water repellency with a water contact angle of 123.5–133.8°. Therefore, they show a good maximum absorption capacity of 12.9–27.3 g/g for fuel oil, 10.2–24.5 g/g for 5w30 motor oil, and 10.2–23.5 g/g for diesel oil; these good characteristics are attributed to their porous hollow structure. Moreover, the oil absorption of polypropylene aerogels in this work is 5 times better than that of the previous one and equivalent to that of commercial absorbents and other polymer aerogels from plastics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P.C. Nwilo, Badejo OT (2005), Oil spill problems and management in the Niger Delta. Int Oil Spill Conf Proc 1, 567–570 (2005)

    Article  Google Scholar 

  2. O.N. Albert, D. Amaratunga, R.P. Haigh, Evaluation of the impacts of oil spill disaster on communities and its influence on restiveness in Niger Delta, Nigeria. Procedia Eng 212, 1054–1061 (2018)

    Article  Google Scholar 

  3. Chukwuka KS, Alimba CG, Ataguba GA, Jimoh WA, The impacts of petroleum production on terrestrial fauna and flora in the oil-producing region of Nigeria, in In: The Political Ecology of Oil and Gas Activities in the Nigerian Aquatic Ecosystem, 2018, The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom: Candice Janco.

  4. I.B. Ivshina, M.S. Kuyukina, A.V. Krivoruchko, A.A. Elkin, S.O. Makarov, C.J. Cunningham et al., Oil spill problems and sustainable response strategies through new technologies. Environ Sci Process Impacts 17(7), 1201–1219 (2015)

    Article  CAS  Google Scholar 

  5. J. Wise, J.P. Wise, A review of the toxicity of chemical dispersants. Rev Environ Health 26(4), 281–300 (2011)

    Article  CAS  Google Scholar 

  6. D.K. Le, G.N. Ng, H.W. Koh, X. Zhang, Q.B. Thai, N. Phan-Thien et al., Methyltrimethoxysilane-coated recycled polyethylene terephthalate aerogels for oil spill cleaning applications. Mater Chem Phys 239, 122064 (2020)

    Article  Google Scholar 

  7. N.H.N. Do, T.P. Luu, Q.B. Thai, D.K. Le, N.D.Q. Chau, S.T. Nguyen et al., Advanced fabrication and application of pineapple aerogels from agricultural waste. Adv Funct Mater Mater Technol 35, 1–8 (2019)

    Google Scholar 

  8. J.L. Gurav, I.K. Jung, H.H. Park, E.S. Kang, D.Y. Nadargi, Silica aerogel: synthesis and applications. J Nanomater 2010, 1–11 (2010)

    Article  Google Scholar 

  9. A. Zaman, F. Huang, M. Jiang, W. Wei, Z. Zhou, Preparation, properties, and applications of natural cellulosic aerogels: a review. Energ Built Environ 1, 60–76 (2020)

    Article  Google Scholar 

  10. J. Feng, S.T. Nguyen, Z. Fan, H.M. Duong, Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chem Eng J 270, 168–175 (2015)

    Article  CAS  Google Scholar 

  11. N.H.N. Do, T.P. Luu, Q.B. Thai, D.K. Le, N.D.Q. Chau, S.T. Nguyen et al., Heat and sound insulation applications of pineapple aerogels from pineapple waste. Mater Chem Phys 242, 122267 (2020)

    Article  CAS  Google Scholar 

  12. Q.B. Thai, T.E. Siang, D.K. Le, W.A. Shah, N. Phan-Thien, H.M. Duong, Advanced fabrication and multi-properties of rubber aerogels from car tire waste. Colloid Surface A 577, 702–708 (2019)

    Article  Google Scholar 

  13. X.H. Lang, T.Y. Zhu, L. Zou, K. Prakashan, Z.X. Zhang, Fabrication and characterization of polypropylene aerogel material and aerogel coated hybrid materials for oil-water separation applications. Prog Org Coat 137, 105370 (2019)

    Article  CAS  Google Scholar 

  14. A.M. Alhozaimy, P. Soroushian, F. Mirza, Mechanical properties of polypropylene fiber reinforced concrete and the effects of pozzolanic materials. Cem Concr Compos 18(2), 85–92 (1996)

    Article  CAS  Google Scholar 

  15. M. Zanini, A. Lavoratti, L.K. Lazzari, D. Galiotto, M. Pagnocelli, C. Baldasso et al., Producing aerogels from silanized cellulose nanofiber suspension. Cellulose 24, 769–779 (2017)

    Article  CAS  Google Scholar 

  16. J.P. Simonin, On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem Eng J 300, 254–263 (2016)

    Article  CAS  Google Scholar 

  17. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes. Process Biochem 34(5), 451–465 (1999)

    Article  CAS  Google Scholar 

  18. H.W. Koh, D.K. Le, G.N. Ng, X. Zhang, N. Phan-Thien, U. Kureemun et al., Advanced recycled polyethylene terephthalate aerogels from plastic waste for acoustic and thermal insulation applications. Gels 4, 43 (2018)

    Article  Google Scholar 

  19. S. Salomo, T.X. Nguyen, D.K. Le, X. Zhang, N. Phan-Thien, H.M. Duong, Advanced fabrication and properties of hybrid polyethylene tetraphalate fiber–silica aerogels from plastic bottle waste. Colloid Surface A 556, 37–42 (2018)

    Article  CAS  Google Scholar 

  20. A. Hoseini, A. Malekian, M. Bahrami, Deformation and thermal resistance study of aerogel blanket insulation material under uniaxial compression. Energ Buildings 130, 228–237 (2016)

    Article  Google Scholar 

  21. J. Kono, Y. Goto, Y. Ostermeyer, R. Frischknecht, H. Wallbaum, Factors for eco- efficiency improvement of thermal insulation materials. Key Eng Mater 678, 1–3 (2016)

    Article  Google Scholar 

  22. Q.B. Thai, R.O. Chong, P.T.T. Nguyen, D.K. Le, P.K. Le, N. Phan-Thien, H.M. Duong, Recycling of waste tire fibers into advanced aerogels for thermal insulation and sound absorption applications. J Environ Chem Eng 8(5), 104279 (2020)

    Article  CAS  Google Scholar 

  23. D.T. Tran, S.T. Nguyen, N.D. Do, N.N.T. Thai, Q.B. Thai, H.K.P. Huynh, V.T.T. Nguyen, A.N. Phan, Green aerogels from rice straw for thermal, acoustic insulation and oil spill cleaning applications. Mater Chem Phys 253, 123363 (2020)

    Article  CAS  Google Scholar 

  24. Ł Klapiszewsk, K. Bula, M. Sobczak, Jesionowski T (2016), Influence of processing conditions on the thermal stability and mechanical properties of pp/silica-lignin composites. Int J Polym Sci 1, 1–9 (2016)

    Article  Google Scholar 

  25. N.D.Q. Chau, T.T.N. Nghiem, H.L.X. Doan, N.H.N. Do, V.T. Tran, S.T. Nguyen, P.K. Le, Advanced fabrication and applications of cellulose acetate aerogels from cigarette butts. Mater Transac 61(8), 1550–1554 (2020)

    Article  CAS  Google Scholar 

  26. L. Bei-xing, C. Ming-xiang, C. Fang, L. Lu-ping, The mechanical properties of polypropylene fiber reinforced concrete. J Wuhan Univ Technol Mater Sci Ed 19(3), 68–71 (2004)

    Article  Google Scholar 

  27. Fang J, Zhang L, Sutton D, Wang X, Lin T (2012), Needleless melt-electrospinning of polypropylene nanofibres. J Nanomater, 2012(2–3).

  28. M.S.A. Rani, S. Rudhziah, A. Ahmad, N.S. Mohamed, Biopolymer electrolyte based on derivatives of cellulose from kenaf bast fiber. Polymers 6(9), 2371–2385 (2014)

    Article  Google Scholar 

  29. Q.B. Thai, D.K. Le, N.H.N. Do, P.K. Le, N. Phan-Thien, C.Y. Wee et al., Advanced aerogels from waste tire fibers for oil spill-cleaning applications. J Environ Chem Eng 8(4), 104016 (2020)

    Article  CAS  Google Scholar 

  30. H. Cheng, B. Gu, M.P. Pennefather, T.X. Nguyen, N. Phan-Thien, H.M. Duong, Cotton aerogels and cotton-cellulose aerogels from environmental waste for oil spillage cleanup. Mater Design 130, 452–458 (2017)

    Article  CAS  Google Scholar 

Download references

Funding

This research is funded by Centre Asiatique de Recherche sur l’Eau under grant number TC-KTHH-2019-04. We acknowledge the support of time and facilities from Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for this study.

Author information

Authors and Affiliations

Authors

Contributions

NHND: Conceptualization, Visualization, Writing—original draft. THN: Methodology, Investigation. BTP: Formal analysis, Data curation. PTTN: Formal analysis, Characterization. STN: Validation, Writing—review & editing. HMD: Validation, Writing—review & editing. PKL: Writing—review & editing, Funding acquisition, Project administration.

Corresponding author

Correspondence to Phung K. Le.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, N.H.N., Nguyen, T.H., Pham, B.T. et al. Green fabrication of flexible aerogels from polypropylene fibers for heat insulation and oil/water separation. J Porous Mater 28, 617–627 (2021). https://doi.org/10.1007/s10934-020-01022-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-020-01022-8

Keywords

Navigation