A study on the mechanical strength of Fe2O3/Cr2O3/CuO catalyst for high temperature water gas shift reaction


The present study aims to investigate the effects of iron (hydr)oxide phases formed during precipitation and the addition of different binders on the mechanical and catalytic performance of the catalyst. A series of Fe2O3/Cr2O3/CuO catalysts were synthesized via the oxidation-precipitation method. MgCO3, aluminous cement, calcium magnesium aluminate cement and a casting repair paste (CRP) were used as the binder. XRD, SEM, BET, BJH, and TPR analyses were performed to characterize the prepared samples. Also, the Weibull model was used to analyze the crushing strength data of the fresh and used catalysts. The results show that the synthesis of the catalyst by oxidation of Fe2+ ions in low pH media could modify the mechanical strength of the catalyst. Also, it was found that the addition of binder affects the crystallinity, reducibility and activity of the HTS catalysts, as well as the mechanical strength. Among the fresh catalysts, the sample prepared by MgCO3 showed the best mechanical behavior. In comparison, binder CRP exhibited the highest crush strength after reduction and reaction processes and the slightest side effects on the structure and performance of the catalyst. The activity loss during the reaction was found to be significant for the cement binders.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    T.K. Patra, P.N. Sheth, Int. J. Hydrog. Energy 44(23), 11602 (2019)

    CAS  Article  Google Scholar 

  2. 2.

    A. Bassani, H. van Dijk, P. Cobden, et al., Int. J. Hydrog. Energy 44(31), 16132 (2019)

    CAS  Article  Google Scholar 

  3. 3.

    D.S. Newsome, Catal. Rev. Sci. Eng. 21(2), 275 (1980)

    CAS  Article  Google Scholar 

  4. 4.

    M. Zhu, I.E. Wachs, ACS Catal. 6(2), 722 (2015)

    Article  Google Scholar 

  5. 5.

    Y. Li, R. Wang, J. Yu, J. Zhang, L. Chang, Appl. Catal. A Gen. 133(2), 293 (1995)

    CAS  Article  Google Scholar 

  6. 6.

    Ward AM, SA Axon, & PJ Murray, (2008), Spinel based high temperature shift catalysts, (Google Patents)

  7. 7.

    C. Ratnasamy, J.P. Wagner, Catal. Rev. 51(3), 325 (2009)

    CAS  Article  Google Scholar 

  8. 8.

    D. Wu, J. Zhou, Y. Li, AICHE J. 53(10), 2618 (2007)

    CAS  Article  Google Scholar 

  9. 9.

    D. Wu, Y. Li, J. Zhang, et al., Chem. Eng. Sci. 56(24), 7035 (2001)

    CAS  Article  Google Scholar 

  10. 10.

    Li Y, J Zhao, & L Chang, (1991), Factors analysis for mechanical strength in pelleting process of Fe-based high temperature shift catalyst. in Studies in Surface Science and Catalysis, (Elsevier, 145)

  11. 11.

    Y. Li, X. Li, L. Chang, et al., Catal. Today 51(1), 73 (1999)

    CAS  Article  Google Scholar 

  12. 12.

    Y. Li, L. Chang, Ind. Eng. Chem. Res. 35(11), 4050 (1996)

    CAS  Article  Google Scholar 

  13. 13.

    Y. Li, R. Wang, J. Zhang, L. Chang, Catal. Today 30(1–3), 49 (1996)

    CAS  Article  Google Scholar 

  14. 14.

    Daussat RL, (1955), Activating carbon monoxide conversion catalyst, (Google Patents)

  15. 15.

    P. Rotaru, S.I. Blejoiu, M. Stanciu, et al., Microporous Mesoporous Mater. 83(1–3), 159 (2005)

    CAS  Article  Google Scholar 

  16. 16.

    D. Grenoble, M. Estadt, D. Ollis, J. Catal. 67(1), 90 (1981)

    CAS  Article  Google Scholar 

  17. 17.

    F. Meshkani, M. Rezaei, Catal. Commun. 58, 26 (2015)

    CAS  Article  Google Scholar 

  18. 18.

    Schneider M, J Pohl, K Kochloefl, & O Bock, (1986), Iron oxide-chromium oxide catalyst and process for high temperature water-gas shift reaction, (Google Patents)

  19. 19.

    Lorenz E, F Wodtcke, FL Ebenhoech, E Giesler, & H Kirner, (1970), Catalytic reaction of carbon monoxide with steam, (Google Patents)

  20. 20.

    Windawi H, & RJ Lawson, (1984), Method for obtaining improved catalyst systems, (Google Patents)

  21. 21.

    Moon D, J Ryu, D Kim, S Lee, & B Lee, (2005), High performance water gas shift catalyst and a method of preparing the same, (Google Patents)

  22. 22.

    Tamaru A, Y Ohshima, H Hashimoto, & K Honda, (1990), Catalyst for conversion of carbon monoxide, (Google Patents)

  23. 23.

    J. Hargreaves, A. Munnoch, Catalysis Sci. Technol. 3(5), 1165 (2013)

    CAS  Article  Google Scholar 

  24. 24.

    A. Khassin, T. Minyukova, M. Demeshkina, et al., Kinet. Catal. 50(6), 837 (2009)

    CAS  Article  Google Scholar 

  25. 25.

    X.J. Wang, J. Renn, J. Spencer, C. Ratnasamy, Y. Cai, Top. Catal. 56(18–20), 1899 (2013)

    Article  Google Scholar 

  26. 26.

    Keturakisa C, M Daturib, & IE Wachsa, (2012)

  27. 27.

    F. Meshkani, M. Rezaei, Renew. Energy 74, 588 (2015)

    CAS  Article  Google Scholar 

  28. 28.

    F. Meshkani, M. Rezaei, J. Ind. Eng. Chem. 20(5), 3297 (2014)

    CAS  Article  Google Scholar 

  29. 29.

    L. Zhang, X. Wang, J.M.M. Millet, P.H. Matter, U.S. Ozkan, Appl. Catal. A Gen. 351(1), 1 (2008)

    CAS  Article  Google Scholar 

  30. 30.

    G.K. Reddy, K. Gunasekera, P. Boolchand, J. Dong, P.G. Smirniotis, J. Phys. Chem. C 115(15), 7586 (2011)

    CAS  Article  Google Scholar 

  31. 31.

    D.-W. Jeong, A. Jha, W.-J. Jang, W.-B. Han, H.-S. Roh, Chem. Eng. J. 265, 100 (2015)

    CAS  Article  Google Scholar 

  32. 32.

    C. Rhodes, G.J. Hutchings, Phys. Chem. Chem. Phys. 5(12), 2719 (2003)

    CAS  Article  Google Scholar 

  33. 33.

    C. Messi, P. Carniti, A. Gervasini, J. Therm. Anal. Calorim. 91(1), 93 (2008)

    CAS  Article  Google Scholar 

  34. 34.

    D.-W. Jeong, V. Subramanian, J.-O. Shim, et al., Catal. Lett. 143(5), 438 (2013)

    CAS  Article  Google Scholar 

  35. 35.

    Griffith AA, (1921) Philosophical transactions of the royal society of London. Series A, containing papers of a mathematical or physical character 221(582–593): 163

  36. 36.

    W. Weibull, J. Appl. Mech. 18(3), 293 (1951)

    Article  Google Scholar 

  37. 37.

    D. Wu, J. Zhou, Y. Li, Chem. Eng. Res. Des. 84(12), 1152 (2006)

    CAS  Article  Google Scholar 

  38. 38.

    Y. Li, D. Wu, J. Zhang, et al., Powder Technol. 113(1–2), 176 (2000)

    CAS  Article  Google Scholar 

  39. 39.

    Y. Li, D. Wu, Y. Lin, China Particuol. 2(2), 53 (2004)

    CAS  Article  Google Scholar 

  40. 40.

    C. Subero-Couroyer, M. Ghadiri, N. Brunard, F. Kolenda, Chem. Eng. Res. Des. 81(8), 953 (2003)

    CAS  Article  Google Scholar 

  41. 41.

    E. David, Arch. Mat. Sci. Eng. 73(1), 5 (2015)

    Google Scholar 

  42. 42.

    M. Zakeri, A. Samimi, M.S. Afarani, A. Salehirad, Part. Sci. Technol. 36(1), 96 (2018)

    CAS  Article  Google Scholar 

  43. 43.

    D. Rethwisch, J. Dumesic, Appl. Catal. 21(1), 97 (1986)

    CAS  Article  Google Scholar 

  44. 44.

    M.B. Jensen, L.G. Pettersson, O. Swang, U. Olsbye, J. Phys. Chem. B 109(35), 16774 (2005)

    CAS  Article  Google Scholar 

  45. 45.

    Z. Li, Y. Liu, N. Cai, Int. J. Hydrog. Energy 37(15), 11227 (2012)

    CAS  Article  Google Scholar 

  46. 46.

    C.R. Lund, J. Dumesic, J. Catal. 76(1), 93 (1982)

    CAS  Article  Google Scholar 

  47. 47.

    C.R. Lund, J. Dumesic, J. Phys. Chem. 86(1), 130 (1982)

    CAS  Article  Google Scholar 

  48. 48.

    G. Chinchen, R. Logan, M. Spencer, Appl. Catal. 12(1), 69 (1984)

    CAS  Article  Google Scholar 

  49. 49.

    Lund CR, (2002), Water-gas shift kinetics over iron oxide catalysts at membrane reactor conditions, (National Energy Technology Lab., Pittsburgh, PA (US); National Energy …)

Download references


The financial support from the Petrochemical Research and Technology Company, Iran is gratefully acknowledged.

Author information



Corresponding author

Correspondence to Mohadese Nazari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bahmani, M., Nazari, M. & Mehreshtiagh, M. A study on the mechanical strength of Fe2O3/Cr2O3/CuO catalyst for high temperature water gas shift reaction. J Porous Mater 28, 683–693 (2021). https://doi.org/10.1007/s10934-020-01014-8

Download citation


  • High-temperature shift catalysts
  • Oxidation-precipitation
  • Mechanical strength
  • Binder
  • Weibull model