Drying kinetics and acoustic properties of soft porous polymer materials


We describe a method for the fabrication of acoustic metasurfaces, which is based on soft porous polymer materials. The materials are obtained using an emulsion templating technique, which allows for the fabrication of soft porous polymers with fully controlled porosity values between 0 and 30%. Our approach involves the polymerization of water-in-silicone emulsions with controlled water volume fractions. The obtained wet solid monolith samples are dried using three different methods. Due to the softness of the polymer matrix, and like in polyHIPE hydrogels or silica aerogels, the first method—regular air drying—leads to a collapse of the material and we present a complete experimental study of the observed kinetics as well as a model to account for the observed results. We show that this model can catch the kinetics characteristics. Then, using two alternative drying techniques, H2O2-assisted and supercritical drying, we show that it is possible to obtain materials with fully controlled porosities. The speed of sound—or equivalently the material acoustic index—inside the material being dependent on its porosity, we obtain a gradient-index acoustic material by spatially controlling the porosity distribution along the two dimensions of these metasurfaces. Their ability in terms of wavefront shaping is then demonstrated through a deflecting experiment performed in water with a sample having a thickness five times smaller than the incident acoustic wavelength at ultrasonic frequencies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Y. Xu, Y. Fu, H. Chen, Planar gradient metamaterials. Nat. Rev. Mater. 1(12), 16067 (2016)

    CAS  Article  Google Scholar 

  2. 2.

    B. Assouar, B. Liang, Y. Wu, Y. Li, J.C. Cheng, Y. Jing, Acoustic metasurfaces. Nat. Rev. Mater. 3, 460–472 (2018)

    CAS  Article  Google Scholar 

  3. 3.

    Y. Xie, W. Wang, H. Chen, A. Konneker, B.I. Popa, S.A. Cummer, Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nat. Commun. 5, 5553 (2014)

    CAS  Article  Google Scholar 

  4. 4.

    Y. Li, G. Yu, B. Liang, X. Zou, G. Li, S. Cheng, J. Cheng, Three-dimensional ultrathin planar lenses by acoustic metamaterials. Sci. Rep. 4, 6830 (2014)

    CAS  Article  Google Scholar 

  5. 5.

    B. Xie, K. Tang, H. Cheng, Z. Liu, S. Chen, J. Tian, Coding acoustic metasurfaces. Adv. Mater. 29, 1603507 (2017)

    Article  Google Scholar 

  6. 6.

    H. Tang, Z. Chen, N. Tang, S. Li, Y. Shen, Y. Peng, X. Zhu, J. Zang, Hollow-out patterning ultrathin acoustic metasurfaces for multifunctionalities using soft fiber/rigid bead networks. Adv. Funct. Mater. 28(36), 1801127 (2018)

    Article  Google Scholar 

  7. 7.

    X. Su, A.N. Norris, C.W. Cushing, M.R. Haberman, P.S. Wilson, Broadband focusing of underwater sound using a transparent pentamode lens. J. Acoust. Soc. Am. 141(6), 4408–4417 (2017)

    Article  Google Scholar 

  8. 8.

    D.C. Calvo, A.L. Thangawng, M. Nicholas, C.N. Layman, Thin Fresnel zone plate lenses for focusing underwater sound. Appl. Phys. Lett. 107(1), 014103 (2015)

    Article  Google Scholar 

  9. 9.

    Y. Jin, R. Kumar, O. Poncelet, O. Mondain-Monval, T. Brunet, Flat acoustics with soft gradient-index metasurfaces. Nat. Commun. 10, 143 (2019)

    Article  Google Scholar 

  10. 10.

    A. Kovalenko, K. Zimny, B. Mascaro, T. Brunet, O. Mondain-Monval, Tailoring of the porous structure of soft emulsion-templated polymer materials. Soft Matter 12, 5154–5163 (2016)

    CAS  Article  Google Scholar 

  11. 11.

    A. Bisson, A. Rigacci, D. Lecomte, E. Rodier, P. Achard, Drying of silica gels to obtain aerogels: phenomenology and basic techniques. Drying Technol. 21(4), 593–628 (2003)

    CAS  Article  Google Scholar 

  12. 12.

    Y. Lumelsky, M.S. Silverstein, Biodegradable porous polymers through emulsion templating. Macromolecules 42(5), 1627–1623 (2009)

    CAS  Article  Google Scholar 

  13. 13.

    T.D. Wheeler, A.D. Stroock, The transpiration of water at negative pressures in a synthetic tree. Nature 455(7210), 208–212 (2008)

    CAS  Article  Google Scholar 

  14. 14.

    M.S. Silverstein, PolyHIPEs: recent advances in emulsion-templated porous polymers. Prog. Polym. Sci. 39(1), 199–234 (2014)

    CAS  Article  Google Scholar 

  15. 15.

    I. Pulko, P. Krajnc, High internal phase emulsion templating—a path to hierarchically porous functional polymers. Macromol. Rapid Commun. 33(20), 1731–1746 (2012)

    CAS  Article  Google Scholar 

  16. 16.

    K. Zimny, A. Merlin, A. Ba, C. Aristégui, T. Brunet, O. Mondain-Monval, Soft porous silicone rubbers as key elements for the realization of acoustic metamaterials. Langmuir 31, 3215–3221 (2015)

    CAS  Article  Google Scholar 

  17. 17.

    A. Kovalenko, M. Fauquignon, T. Brunet, O. Mondain-Monval, Tuning the sound speed in macroporous polymers with a hard or soft matrix. Soft Matter 13, 4526–4532 (2017)

    CAS  Article  Google Scholar 

  18. 18.

    M.P. Milner, L. Jin, S.B. Hutchens, Creasing in evaporation-driven cavity collapse. Soft Matter 13, 6894 (2017)

    CAS  Article  Google Scholar 

  19. 19.

    L. Daubersies, J.B. Salmon, Evaporation of solutions and colloidal dispersions in confined droplets. Phys. Rev. E 84, 031406 (2011)

    CAS  Article  Google Scholar 

  20. 20.

    B. Dollet, J.F. Louf, M. Alonzo, K.H. Jensen, P. Marmottant, Drying of channels by evaporation through a permeable medium. J. R. Soc. Interface 16(151), 20180690 (2019)

    CAS  Article  Google Scholar 

  21. 21.

    A. Della Martina, J.G. Hilborn, J. Kiefer, J.L. Hedrick, S. Srinivasan, R.D. Miller, in Siloxane elastomer foams, ed. by K.C. Khemani. Polymeric Foams: Science and Technology, ACS Symposium Series Ch. 2, 8–25, vol 669 (American Chemical Society, Washington DC, 1997)

  22. 22.

    S.E. Bae, J.S. Son, K. Park, D.K. Han, Fabrication of covered porous PLGA microspheres using hydrogen peroxide for controlled drug delivery and regenerative medicine. J. Control. Release 133(1), 37–43 (2009)

    CAS  Article  Google Scholar 

  23. 23.

    A. Ba, A. Kovalenko, C. Aristégui, O. Mondain-Monval, T. Brunet, Soft porous silicone rubbers with ultra-low sound speeds in acoustic metamaterials. Sci. Rep. 7, 40106 (2017)

    Article  Google Scholar 

  24. 24.

    G. Kuster, M. Toksöz, Velocity and attenuation of seismic waves in two-phase: Part I. Theoretical formulations. Geophysics 39(5), 587–606 (1974)

    Article  Google Scholar 

Download references


We thank Frédéric Marchal and Tania Ireland from Elkem Company for fruitful discussions and for providing us with silicone rubber. Special thanks to Marco Faustini and Philippe Barois for fruitful suggestions and discussions. Special thanks to Marie-Anne Dourges, from Institut des Sciences Moléculaires – CNRS – Univ. of Bordeaux, for her help on BET analysis. This work was partially funded and performed within the framework of the Labex AMADEUS ANR-10-LABEX-0042-AMADEUS with the help of the French state Initiative d’Excellence IdEx ANR-10-IDEX-003-02 and project BRENNUS ANR-15-CE08-0024.

Author information



Corresponding author

Correspondence to O. Mondain-Monval.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Jin, Y., Marre, S. et al. Drying kinetics and acoustic properties of soft porous polymer materials. J Porous Mater 28, 249–259 (2021). https://doi.org/10.1007/s10934-020-00987-w

Download citation


  • Porous materials
  • Drying methods
  • Emulsion templating
  • Metasurfaces
  • Acoustic metamaterials