Skip to main content

Advertisement

Log in

One-step fabrication of Ag/RGO doped TiO2 nanotubes during anodization process with high photocatalytic performance

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Reduced graphene oxide (RGO) and Ag nanoparticles were incorporated simultaneously with two-step anodic TiO2 nanotube through anodization process, and their photocatalytic activity was investigated in the degradation of 2,4-dichlorophenol (2,4-DCP). Furthermore, the optical properties and photocatalytic degradation efficiency were examined as a function of Ag NPs concentration in Ag/RGO–TiO2 nanotube. Morphological characterization showed that Ag NPs and RGO sheets were well-doped inside and outside the TiO2 nanotubes’ walls. Meanwhile, X-ray diffraction and EDX analysis confirmed the existence of both Ag NPs and RGO. The optical investigation revealed that the incorporation of Ag NPs and RGO with TiO2 nanotubes improved the light absorbance and the narrowing of TNT bandgap energy (from 2.85 to 2.35 eV). Therefore, among the various samples, Ag50/RGO–TNTs photocatalyst had the most optimal performance, degrading 96% and 66% of 2,4-DCP under UV and visible light irradiation, respectively. The kinetic study confirmed that degradation reactions over all photocatalysts followed zero-order kinetics. Finally, the recovery test of the optimum sample (Ag50/RGO–TNT) showed 6% reduction following 5-cycle photocatalytic degradation of 2,4-DCP under UV irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

UV:

Ultra-violet radiation

v:

Anodization voltage (V)

D:

Mean crystalline size of TiO2

V:

Cell volume of TiO2

d:

Interplanar spacing

Eg :

Energy of band gap

h:

Planck’s constant

K:

Scherrer constant

C:

Concentration of pollutant (ppm)

C0 :

Initial concentration of pollutant (ppm)

t:

Photocatalytic degradation time (min)

kabs :

Apparent rate constant (ppm/min)

R2 :

Correlation coefficient

α:

Absorption coefficient

ϑ:

Frequency of vibration

\(h,k,l\) :

Miller coordinates

References

  1. S. Rasalingam, R. Peng, R.T. Koodali, Removal of hazardous pollutants from wastewaters: applications of TiO2–SiO2 mixed oxide materials. J. Nanomater. 2014, 42 (2014)

    Google Scholar 

  2. D. No, 2455/2001/EC of the European Parliament and of the Council of 20 November 2001 Establishing the List of Priority Substances in the Field of Water Policy and Amending Directive 2000/60/EC. Off. J. Eur. Communities 15, 1–5 (2001)

  3. I. Durruty, E. Okada, J.F. González, S.E. Murialdo, Multisubstrate monod kinetic model for simultaneous degradation of chlorophenol mixtures. Biotechnol. Bioprocess Eng. 16, 908 (2011)

    CAS  Google Scholar 

  4. S. Esplugas, J. Gimenez, S. Contreras, E. Pascual, M. Rodríguez, Comparison of different advanced oxidation processes for phenol degradation. Water Res. 36, 1034–1042 (2002)

    CAS  PubMed  Google Scholar 

  5. S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal. Today 147, 1–59 (2009)

    CAS  Google Scholar 

  6. P. Monazzam, B.F. Kisomi, Co/TiO2 nanoparticles: preparation, characterization and its application for photocatalytic degradation of methylene blue. Desalin. Water Treat: 63, 283–292 (2017)

    Google Scholar 

  7. L.L. Costa, A.G. Prado, TiO2 nanotubes as recyclable catalyst for efficient photocatalytic degradation of indigo carmine dye. J. Photochem. Photobiol. A 201, 45–49 (2009)

    CAS  Google Scholar 

  8. H. Yu, J. Yu, B. Cheng, J. Lin, Synthesis, characterization and photocatalytic activity of mesoporous titania nanorod/titanate nanotube composites. J. Hazard. Mater. 147, 581–587 (2007)

    CAS  PubMed  Google Scholar 

  9. P. Roy, D. Kim, K. Lee, E. Spiecker, P. Schmuki, TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale 2, 45–59 (2010)

    CAS  PubMed  Google Scholar 

  10. X. Yu, Y. Li, W. Wlodarski, S. Kandasamy, K. Kalantar-Zadeh, Fabrication of nanostructured TiO2 by anodization: a comparison between electrolytes and substrates. Sens. Actuators B 130, 25–31 (2008)

    CAS  Google Scholar 

  11. I. Paramasivam, H. Jha, N. Liu, P. Schmuki, A review of photocatalysis using self-organized TiO2 nanotubes and other ordered oxide nanostructures. Small 8, 3073–3103 (2012)

    CAS  PubMed  Google Scholar 

  12. Y.C. Nah, I. Paramasivam, P. Schmuki, Doped TiO2 and TiO2 nanotubes: synthesis and applications. ChemPhysChem 11, 2698–2713 (2010)

    CAS  PubMed  Google Scholar 

  13. H. Liang, X. Li, Effects of structure of anodic TiO2 nanotube arrays on photocatalytic activity for the degradation of 2, 3-dichlorophenol in aqueous solution. J. Hazard. Mater. 162, 1415–1422 (2009)

    CAS  PubMed  Google Scholar 

  14. X. Zhao, Y. Zhu, Y. Wang, L. Zhu, L. Yang, Z. Sha, Influence of anodic oxidation parameters of TiO2 nanotube arrays on morphology and photocatalytic performance. J. Nanomater. 2015, 1 (2015)

    Google Scholar 

  15. J.V. Pasikhani, N. Gilani, A.E. Pirbazari, The effect of the anodization voltage on the geometrical characteristics and photocatalytic activity of TiO2 nanotube arrays. Nanostruct. Nano-objects 8, 7–14 (2016)

    CAS  Google Scholar 

  16. P. Mazierski, M. Nischk, M. Gołkowska, W. Lisowski, M. Gazda, M.J. Winiarski, T. Klimczuk, A. Zaleska-Medynska, Photocatalytic activity of nitrogen doped TiO2 nanotubes prepared by anodic oxidation: the effect of applied voltage, anodization time and amount of nitrogen dopant. Appl. Catal. B 196, 77–88 (2016)

    CAS  Google Scholar 

  17. S. Bingham, W.A. Daoud, Recent advances in making nano-sized TiO2 visible-light active through rare-earth metal doping. J. Mater. Chem. 21, 2041–2050 (2011)

    CAS  Google Scholar 

  18. N. Gilani, J.V. Pasikhani, P.T. Motie, M. Akbari, Fabrication of quantum Cu(II) nanodot decorated TiO2 nanotubes by the photochemical deposition-assisted hydrothermal method: study catalytic activity in hydrogen generation. Desalin. Water Treat. 139, 145–155 (2019)

    CAS  Google Scholar 

  19. Y. Xia, L. Xu, J. Peng, J. Han, S. Guo, L. Zhang, Z. Han, S. Komarneni, TiO2@g-C3N4 core/shell spheres with uniform mesoporous structures for high performance visible-light photocatalytic application. Ceram. Int. 45, 18844–18851 (2019)

    CAS  Google Scholar 

  20. S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, K.J. Balkus Jr., Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal. 2, 949–956 (2012)

    CAS  Google Scholar 

  21. L.W. Zhang, H.B. Fu, Y.F. Zhu, Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon. Adv. Funct. Mater. 18, 2180–2189 (2008)

    CAS  Google Scholar 

  22. S.Y. Toh, K.S. Loh, S.K. Kamarudin, W.R.W. Daud, Graphene production via electrochemical reduction of graphene oxide: synthesis and characterisation. Chem. Eng. J. 251, 422–434 (2014)

    CAS  Google Scholar 

  23. X. Liu, H. Kim, L.J. Guo, Optimization of thermally reduced graphene oxide for an efficient hole transport layer in polymer solar cells. Org. Electron. 14, 591–598 (2013)

    CAS  Google Scholar 

  24. G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112, 8192–8195 (2008)

    CAS  Google Scholar 

  25. M. Shi, J. Shen, H. Ma, Z. Li, X. Lu, N. Li, M. Ye, Preparation of graphene–TiO2 composite by hydrothermal method from peroxotitanium acid and its photocatalytic properties. Colloids Surf. A 405, 30–37 (2012)

    CAS  Google Scholar 

  26. M.A. Fitri, M. Ota, Y. Hirota, Y. Uchida, K. Hara, D. Ino, N. Nishiyama, Fabrication of TiO2-graphene photocatalyst by direct chemical vapor deposition and its anti-fouling property. Mater. Chem. Phys. 198, 42–48 (2017)

    CAS  Google Scholar 

  27. X.-Y. Zhang, H.-P. Li, X.-L. Cui, Y. Lin, Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J. Mater. Chem. 20, 2801–2806 (2010)

    CAS  Google Scholar 

  28. P. Song, X. Zhang, M. Sun, X. Cui, Y. Lin, Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties. Nanoscale 4, 1800–1804 (2012)

    CAS  PubMed  Google Scholar 

  29. I. Ali, S.-R. Kim, K. Park, J.-O. Kim, One-step electrochemical synthesis of graphene oxide-TiO2 nanotubes for improved visible light activity. Opt. Mater. Express 7, 1535–1546 (2017)

    CAS  Google Scholar 

  30. R. Pasricha, S. Gupta, A.K. Srivastava, A facile and novel synthesis of Ag–graphene-based nanocomposites. Small 5, 2253–2259 (2009)

    CAS  PubMed  Google Scholar 

  31. A. Takai, P.V. Kamat, Capture, store, and discharge. Shuttling photogenerated electrons across TiO2–silver interface. ACS Nano 5, 7369–7376 (2011)

    CAS  PubMed  Google Scholar 

  32. M.K. Seery, R. George, P. Floris, S.C. Pillai, Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J. Photochem. Photobiol. A 189, 258–263 (2007)

    CAS  Google Scholar 

  33. Y.C. Xu, H. You, Preparation and photocatalytic activity of silver doped TiO2 nanotubes. Appl. Mech. Mater. 618, 14–18 (2014)

    CAS  Google Scholar 

  34. H. Kim, K. Lee, Photocatalytic activity of TiO2 nanotubes doped with Ag nanoparticles. J. Nanosci. Nanotechnol. 13, 5597–5600 (2013)

    CAS  PubMed  Google Scholar 

  35. E. Aazam, Visible light photocatalytic degradation of thiophene using Ag–TiO2/multi-walled carbon nanotubes nanocomposite. Ceram. Int. 40, 6705–6711 (2014)

    CAS  Google Scholar 

  36. M.S.A.S. Shah, K. Zhang, A.R. Park, K.S. Kim, N.-G. Park, J.H. Park, P.J. Yoo, Single-step solvothermal synthesis of mesoporous Ag–TiO2–reduced graphene oxide ternary composites with enhanced photocatalytic activity. Nanoscale 5, 5093–5101 (2013)

    Google Scholar 

  37. K.H. Leong, L.C. Sim, D. Bahnemann, M. Jang, S. Ibrahim, P. Saravanan, Reduced graphene oxide and Ag wrapped TiO2 photocatalyst for enhanced visible light photocatalysis. APL Mater. 3, 104503 (2015)

    Google Scholar 

  38. L.C. Sim, K.H. Leong, S. Ibrahim, P. Saravanan, Graphene oxide and Ag engulfed TiO2 nanotube arrays for enhanced electron mobility and visible-light-driven photocatalytic performance. J. Mater. Chem. A 2, 5315–5322 (2014)

    CAS  Google Scholar 

  39. J. Guerrero-Contreras, F. Caballero-Briones, Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Mater. Chem. Phys. 153, 209–220 (2015)

    CAS  Google Scholar 

  40. J. Gunlazuardi, E.L. Dewi, Effect of NaBF4 addition on the anodic synthesis of TiO2 nanotube arrays photocatalyst for production of hydrogen from glycerol–water solution. Int. J. Hydrog. Energy 39, 16927–16935 (2014)

    Google Scholar 

  41. F. Gobal, M. Faraji, Electrochemical synthesis of reduced graphene oxide/TiO2 nanotubes/Ti for high-performance supercapacitors. Ionics 21, 525–531 (2015)

    CAS  Google Scholar 

  42. X. Kang, J. Qi, L. Ye, H. You, L.J. Hu, Study on catalytic efficiency of Ag/N co-doped TiO2 nanotube arrays under visible light irradiation. Adv. Mater. Res. 690–693, 511–517 (2013)

    Google Scholar 

  43. M. Khan, W. Cao, Cationic (V, Y)-codoped TiO2 with enhanced visible light induced photocatalytic activity: a combined experimental and theoretical study. J. Appl. Phys. 114, 183514 (2013)

    Google Scholar 

  44. H.C. Liang, X.Z. Li, J. Nowotny, Photocatalytical properties of TiO2 nanotubes. Solid State Phenom. 162, 295–328 (2010)

    CAS  Google Scholar 

  45. M. Suwarnkar, R. Dhabbe, A. Kadam, K. Garadkar, Enhanced photocatalytic activity of Ag doped TiO2 nanoparticles synthesized by a microwave assisted method. Ceram. Int. 40, 5489–5496 (2014)

    CAS  Google Scholar 

  46. L.G. Devi, B.N. Murthy, Characterization of Mo doped TiO2 and its enhanced photo catalytic activity under visible light. Catal. Lett. 125, 320–330 (2008)

    CAS  Google Scholar 

  47. Y. Xia, R. Gang, L. Xu, S. Huang, L. Zhou, J. Wang, Nanorod-pillared mesoporous rGO/ZnO/Au hybrids for photocatalytic Cr(VI) reduction: enhanced Cr(VI) adsorption and solar energy harvest. Ceram. Int. 46, 1487–1493 (2020)

    CAS  Google Scholar 

  48. J.V. Pasikhani, N. Gilani, A.E. Pirbazari, The correlation between structural properties, geometrical features, and photoactivity of freestanding TiO2 nanotubes in comparative degradation of 2, 4-dichlorophenol and methylene blue. Mater. Res. Express 5, 025016 (2018)

    Google Scholar 

  49. S.-R. Kim, I. Ali, J.-O. Kim, Phenol degradation using an anodized graphene-doped TiO2 nanotube composite under visible light. Appl. Surf. Sci. 477, 71–78 (2019)

    CAS  Google Scholar 

  50. F. Tian, Y. Zhang, J. Zhang, C. Pan, Raman spectroscopy: a new approach to measure the percentage of anatase TiO2 exposed (001) facets. J. Phys. Chem. C 116, 7515–7519 (2012)

    CAS  Google Scholar 

  51. Z. Ni, Y. Wang, T. Yu, Z. Shen, Raman spectroscopy and imaging of graphene. Nano Res. 1, 273–291 (2008)

    CAS  Google Scholar 

  52. M. Mohammadi, M.R. Roknabadi, M. Behdani, A. Kompany, Enhancement of visible and UV light photocatalytic activity of rGO-TiO2 nanocomposites: the effect of TiO2/graphene oxide weight ratio. Ceram. Int. 45, 12625–12634 (2019)

    CAS  Google Scholar 

  53. P. Wang, Z.-G. Liu, X. Chen, F.-L. Meng, J.-H. Liu, X.-J. Huang, UV irradiation synthesis of an Au–graphene nanocomposite with enhanced electrochemical sensing properties. J. Mater. Chem. A 1, 9189–9195 (2013)

    CAS  Google Scholar 

  54. J.S. Park, S.M. Cho, W.-J. Kim, J. Park, P.J. Yoo, Fabrication of graphene thin films based on layer-by-layer self-assembly of functionalized graphene nanosheets. ACS Appl. Mater. Interfaces 3, 360–368 (2011)

    CAS  PubMed  Google Scholar 

  55. P. Monazzam, A. Ebrahimian Pirbazari, B. Fakhari, Z. Khodaee, Immobilization of cobalt doped rutile TiO2 on carbon nanotubes walls for efficient photodegradation of 2,4-dichlorophenol under visible light. J. Ultrafine Grained Nanostruct. Mater. 52, 122–132 (2019)

    CAS  Google Scholar 

  56. K. Kočí, K. Zatloukalová, L. Obalová, S. Krejčíková, Z. Lacný, L. Čapek, A. Hospodková, O. Šolcová, Wavelength effect on photocatalytic reduction of CO2 by Ag/TiO2catalyst. Chin. J. Catal. 32, 812–815 (2011)

    Google Scholar 

  57. N. Zhang, Y. Zhang, Y.-J. Xu, Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale 4, 5792–5813 (2012)

    CAS  PubMed  Google Scholar 

  58. Z. Lin, X. Wang, J. Liu, Z. Tian, L. Dai, B. He, C. Han, Y. Wu, Z. Zeng, Z. Hu, On the role of localized surface plasmon resonance in UV-Vis light irradiated Au/TiO2 photocatalysis systems: pros and cons. Nanoscale 7, 4114–4123 (2015)

    CAS  PubMed  Google Scholar 

  59. M. Zhu, P. Chen, M. Liu, Graphene oxide enwrapped Ag/AgX (X = Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst. ACS Nano 5, 4529–4536 (2011)

    CAS  PubMed  Google Scholar 

  60. J.V. Pasikhani, N. Gilani, A.E. Pirbazari, Improvement the wastewater purification by TiO2 nanotube arrays: the effect of etching-step on the photo-generated charge carriers and photocatalytic activity of anodic TiO2 nanotubes. Solid State Sci. 84, 57–74 (2018)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neda Gilani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janekbary, K.K., Gilani, N. & Pirbazari, A.E. One-step fabrication of Ag/RGO doped TiO2 nanotubes during anodization process with high photocatalytic performance. J Porous Mater 27, 1809–1822 (2020). https://doi.org/10.1007/s10934-020-00954-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-020-00954-5

Keywords

Navigation