Skip to main content
Log in

The aluminum current collector with honeycomb-like surface and thick Al2O3 film increased durability and enhanced safety for lithium-ion batteries

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Durability and safety are main factors contributing to the market requirement of lithium-ion batteries (LIBs) in practical applications. The improvement of current collector has been proven as an effective approach to enhance comprehensive performance of LIBs. To achieve a sufficient electrical contact between the current collector and active materials, honeycomb-like surface of aluminum current collector is etched by direct current in sulfuric acid and phosphoric acid mixed solution. At the same time, a dense anodic aluminum oxide film is formed on the surface of aluminum current collector, which can protect LIBs from corrosion and thermal runaway. Experimental results show that the adhesion between the active material and aluminum current collector was improved by 23% after anodization. The corrosion resistance of alumina foil was promoted significantly in ethyl methyl carbonate and ethylene carbonate electrolyte with LiPF6. The corrosion current peak reduces to 0.022 mA/cm2 from 0.267 mA/cm2 after surface treatment. The capacity retention rate of the LiCoO2 electrode with an oxidation-treated aluminum current collector is 6.3% higher than with untreated aluminum foil at 5C after 500 cycles. What’s more, the nail penetration demonstrates that the aluminum current collector we prepared can reduce the temperature of the full batteries surface when the nail pierced, which improved the safety performance of LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H.K. Bruce Dunn, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011)

    PubMed  Google Scholar 

  2. P. Qin, M. Wang, N. Li, H. Zhu, X. Ding, Y. Tang, Bubble-sheet-like interface design with an ultrastable solid electrolyte layer for high-performance dual-ion batteries. Adv. Mater. 29, 1606805 (2017)

    Google Scholar 

  3. K. Xu, Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014)

    CAS  PubMed  Google Scholar 

  4. D.-Y. Shin, D.-H. Park, H.-J. Ahn, Interface modification of an Al current collector for ultrafast lithium-ion batteries. Appl. Surf. Sci. 475, 519–523 (2019)

    CAS  Google Scholar 

  5. S.Y. Kim, Y.I. Song, J.-H. Wee, C.H. Kim, B.W. Ahn, J.W. Lee, S.J. Shu, M. Terrones, Y.A. Kim, C.-M. Yang, Few-layer graphene coated current collectors for safe and powerful lithium ion batteries. Carbon 153, 495–503 (2019)

    CAS  Google Scholar 

  6. Z. Xue, L. Li, L. Cao, W. Zheng, W. Yang, X. Yu, A simple method to fabricate NiFe2O4/NiO@Fe2O3 core-shelled nanocubes based on Prussian blue analogues for lithium ion battery. J. Alloys Compd. 825, 153966 (2020)

    CAS  Google Scholar 

  7. G. Liang, Y. Zhang, Q. Han, Z. Liu, Z. Jiang, S. Tian, A novel 3D-layered electrochemical-thermal coupled model strategy for the nail-penetration process simulation. J. Power Sources 342, 836–845 (2017)

    CAS  Google Scholar 

  8. T. Yamanaka, Y. Takagishi, Y. Tozuka, T. Yamaue, Modeling lithium ion battery nail penetration tests and quantitative evaluation of the degree of combustion risk. J. Power Sources 416, 132–140 (2019)

    CAS  Google Scholar 

  9. T. Ma, L. Chen, S. Liu, Z. Zhang, S. Xiao, B. Fan, L. Liu, C. Lin, S. Ren, F. Wang, Mechanics-morphologic coupling studies of commercialized lithium-ion batteries under nail penetration test. J. Power Sources 437, 226928 (2019)

    CAS  Google Scholar 

  10. S. Zhang, J. Li, N. Jiang, X. Li, S. Pasupath, Y. Fang, Q. Liu, D. Dang, Rational design of an ionic liquid-based electrolyte with high ionic conductivity towards safe lithium/lithium-ion batteries. Chemistry 14, 2810–2814 (2019)

    CAS  Google Scholar 

  11. S.-T. Myung, H. Yashiro, Electrochemical stability of aluminum current collector in alkyl carbonate electrolytes containing lithium bis(pentafluoroethylsulfonyl)imide for lithium-ion batteries. J. Power Sources 271, 167–173 (2014)

    CAS  Google Scholar 

  12. M.S. Adam, H. Whitehead, Current collectors for positive electrodes of lithium-based batteries. J. Electrochem. Soc. 152, A2105–A2113 (2005)

    Google Scholar 

  13. D. Lepage, L. Savignac, M. Saulnier, S. Gervais, S.B. Schougaard, Modification of aluminum current collectors with a conductive polymer for application in lithium batteries. Electrochem. Commun. 102, 1–4 (2019)

    CAS  Google Scholar 

  14. M. Wang, M. Tang, S. Chen, H. Ci, K. Wang, L. Shi, L. Lin, H. Ren, J. Shan, P. Gao, Z. Liu, H. Peng, Graphene-armored aluminum foil with enhanced anticorrosion performance as current collectors for lithium-ion battery. Adv. Mater. 29, 1703882 (2017)

    Google Scholar 

  15. I. Doberdò, N. Löffler, N. Laszczynski, D. Cericola, N. Penazzi, S. Bodoardo, G.-T. Kim, S. Passerini, Enabling aqueous binders for lithium battery cathodes—carbon coating of aluminum current collector. J. Power Sources 248, 1000–1006 (2014)

    Google Scholar 

  16. S.-T. Myung, Y. Hitoshi, Y.-K. Sun, Electrochemical behavior and passivation of current collectors in lithium-ion batteries. J. Mater. Chem. 21, 9891–9911 (2011)

    CAS  Google Scholar 

  17. J.-Q. Huang, P.-Y. Zhai, H.-J. Peng, W.-C. Zhu, Q. Zhang, Metal/nanocarbon layer current collectors enhanced energy efficiency in lithium-sulfur batteries. Sci. Bull. 62, 1267–1274 (2017)

    CAS  Google Scholar 

  18. Y. Yue, H. Liang, 3D current collectors for lithium-ion batteries: a topical review. Small Methods 2, 1800056 (2018)

    Google Scholar 

  19. A. Mukhopadhyay, B.W. Sheldon, Deformation and stress in electrode materials for Li-ion batteries. Prog. Mater. Sci. 63, 58–116 (2014)

    CAS  Google Scholar 

  20. V. Aravindan, J. Gnanaraj, S. Madhavi, H.K. Liu, Lithium-ion conducting electrolyte salts for lithium batteries. Chemistry 17, 14326–14346 (2011)

    CAS  PubMed  Google Scholar 

  21. S. Nakanishi, T. Suzuki, Q. Cui, J. Akikusa, K. Nakamura, Effect of surface treatment for aluminum foils on discharge properties of lithium-ion battery. Trans. Nonferrous Met. Soc. China 24, 2314–2319 (2014)

    CAS  Google Scholar 

  22. W. Yang, H. Dang, S. Chen, H. Zou, Z. Liu, J. Lin, W. Lin, In situ carbon coated LiNi0.5Mn1.5O4 cathode material prepared by prepolymer of melamine formaldehyde resin assisted method. Int. J. Polym. Sci. (2016). https://doi.org/10.1155/2016/427957

    Article  Google Scholar 

  23. B. Jung, B. Lee, Y.-C. Jeong, J. Lee, S.R. Yang, H. Kim, M. Park, Thermally stable non-aqueous ceramic-coated separators with enhanced nail penetration performance. J. Power Sources 427, 271–282 (2019)

    CAS  Google Scholar 

  24. S. Bazhenov, The effect of particles on failure modes of filled polymers. Polym. Eng. Sci. 35, 813–822 (1995)

    CAS  Google Scholar 

  25. S. Tobishima, J. Yamaki, A consideration of lithium cell safety. J. Power Sources 81–82, 882–886 (1999)

    Google Scholar 

  26. S. Yoon, H.-S. Jang, S. Kim, J. Kim, K.Y. Cho, Crater-like architectural aluminum current collectors with superior electrochemical performance for Li-ion batteries. J. Electroanal. Chem. 797, 37–41 (2017)

    CAS  Google Scholar 

  27. C.U. Jeong, S.-Y. Lee, J. Kim, K.Y. Cho, S. Yoon, Embossed aluminum as a current collector for high-rate lithium cathode performance. J. Power Sources 398, 193–200 (2018)

    CAS  Google Scholar 

  28. R. Wang, W. Li, L. Liu, Y. Qian, F. Liu, M. Chen, Y. Guo, L. Liu, Carbon black/graphene-modified aluminum foil cathode current collectors for lithium ion batteries with enhanced electrochemical performances. J. Electroanal. Chem. 833, 63–69 (2019)

    CAS  Google Scholar 

  29. K. Zhang, S.-S. Park, Effects of borate polyester mixed with water on anodizing behavior and electrical properties of ZrO2-coated Al foil. Thin Solid Films 636, 688–693 (2017)

    CAS  Google Scholar 

  30. L. Zaraska, M. Jaskuła, G.D. Sulka, Porous anodic alumina layers with modulated pore diameters formed by sequential anodizing in different electrolytes. Mater. Lett. 171, 315–318 (2016)

    CAS  Google Scholar 

  31. J. Oh, C.V. Thompson, The role of electric field in pore formation during aluminum anodization. Electrochim. Acta 56, 4044–4051 (2011)

    CAS  Google Scholar 

  32. X. Xiao, D. Wang, Effects of Ti doping on structure and electrochemical performance of cathode material LiNi1/3Co1/3Mn1/3O2. J. South China Univ. Technol. 40, 1–6 (2012)

    Google Scholar 

  33. T.U. Kiyoshi Kanamura, S. Shiraishi, M. Ohashi, Z. Takeharab, Electrochemical behavior of Al current collector of rechargeable lithium batteries in propylene carbonate with LiCF3SO3, Li(CF3SO2)2N, or Li(C4F9SO2)(CF3SO2)N. J. Electrochem. Soc. 149, A185–A194 (2002)

    Google Scholar 

  34. H.-B. Han, S.-S. Zhou, D.-J. Zhang, S.-W. Feng, L.-F. Li, K. Liu, W.-F. Feng, J. Nie, H. Li, X.-J. Huang, Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: physicochemical and electrochemical properties. J. Power Sources 196, 3623–3632 (2011)

    CAS  Google Scholar 

  35. M. Fritsch, G. Standke, C. Heubner, U. Langklotz, A. Michaelis, 3D-cathode design with foam-like aluminum current collector for high energy density lithium-ion batteries. J. Energy Storage 16, 125–132 (2018)

    Google Scholar 

  36. K.-Y. Oh, J.B. Siegel, L. Secondo, S.U. Kim, N.A. Samad, J. Qin, D. Anderson, K. Garikipati, A. Knobloch, B.I. Epureanu, C.W. Monroe, A. Stefanopoulou, Rate dependence of swelling in lithium-ion cells. J. Power Sources 267, 197–202 (2014)

    CAS  Google Scholar 

  37. S.B. Chikkannanavar, D.M. Bernardi, L. Liu, A review of blended cathode materials for use in Li-ion batteries. J. Power Sources 248, 91–100 (2014)

    CAS  Google Scholar 

  38. Y. Liu, N.S. Hudak, D.L. Huber, S.J. Limmer, J.P. Sullivan, J.Y. Huang, In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al2O3 layers during lithiation-delithiation cycles. Nano Lett. 11, 4188–4194 (2011)

    CAS  PubMed  Google Scholar 

  39. T. Xu, C. Zhou, H. Zhou, Z. Wang, J. Ren, Synthesis of alumina-coated natural graphite for highly cycling stability and safety of Li‐ion batteries. Chin. J. Chem. 37, 342–346 (2019)

    CAS  Google Scholar 

  40. P. Jindal, J. Bhattacharya, Review—Understanding the thermal runaway behavior of Li-Ion batteries through experimental techniques. J. Electrochem. Soc. 166, A2165–A2193 (2019)

    CAS  Google Scholar 

  41. M. Chen, Q. Ye, C. Shi, Q. Cheng, B. Qie, X. Liao, H. Zhai, Y. He, Y. Yang, New insights into nail penetration of Li-Ion batteries: effects of heterogeneous contact resistance. Batteries Supercaps 2, 874–881 (2019)

    Google Scholar 

  42. T. Yokoshima, D. Mukoyama, F. Maeda, T. Osaka, K. Takazawa, S. Egusa, Operando analysis of thermal runaway in lithium ion battery during nail-penetration test using an X-ray inspection system. J. Electrochem. Soc. 166, A1243–A1250 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21776051) and Natural Science Foundations of Guangdong (2018A030313423).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Yang or Shengzhou Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9631 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, L., Li, L., Xue, Z. et al. The aluminum current collector with honeycomb-like surface and thick Al2O3 film increased durability and enhanced safety for lithium-ion batteries. J Porous Mater 27, 1677–1683 (2020). https://doi.org/10.1007/s10934-020-00942-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-020-00942-9

Keywords

Navigation