Skip to main content
Log in

A comparative study of perfluorinated and non-fluorinated UiO-67 in gas adsorption

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Metal–organic frameworks (MOFs) are perspective materials for application in gas storage, separation and purification. The perfluorination of organic linker is expected to change significantly the surface properties of a MOF and therefore, the adsorption behaviour due to small size, high electronegativity and polarizing ability of fluorine atoms. To reveal the effect of extensive linker fluorination on the properties of MOF, we have developed new method of synthesis of \({\hbox {Zr}}_{6}\) MOF based on perfluorinated biphenyl-4,4\('\)-dicarboxylate of UiO-67 structure denoted as UiO-67-F8. \({\hbox {N}}_{2}\) adsorption at 77 K confirms that UiO-67-F8 is a microporous solid with the BET surface area of \(1629\,{\hbox {m}}^{2}\,{\hbox {g}}^{-1}\) which is the best value for perfluorinated MOFs. Extensive investigations of properties of UiO-67-F8 reveal that hydrophobicity and hydrolytic stability are similar to the parent UiO-67. The low-pressure gas adsorption gravimetric uptakes (\({\hbox {N}}_{2},\)\({\hbox {CO}}_{2},\)\({\hbox {CH}}_{4},\)\({\hbox {C}}_{2}\)-hydrocarbons) at 273 and 298 K are slightly lower for UiO-67-F8 due to larger density and lower pore volume. The results obtained show that the difference in IAST selectivity factors for UiO-67-F8 and UiO-67 are negligible and both non-fluorinated and perfluorinated surfaces are almost identical for adsorption of the most frequently studied gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Bai, Y. Dou, L.H. Xie, W. Rutledge, J.R. Li, H.C. Zhou, Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chem. Soc. Rev. 45(8), 2327–2367 (2016). https://doi.org/10.1039/C5CS00837A

    Article  CAS  PubMed  Google Scholar 

  2. M.O. Barsukova, S.A. Sapchenko, D.N. Dybtsev, V.P. Fedin, Scandium–organic frameworks: progress and prospects. Russ. Chem. Rev. 87(11), 1139–1167 (2018). https://doi.org/10.1070/RCR4826

    Article  CAS  Google Scholar 

  3. S. Biswas, S. Couck, D. Denysenko, A. Bhunia, M. Grzywa, J.F. Denayer, D. Volkmer, C. Janiak, P. Van Der Voort, Sorption and breathing properties of difluorinated MIL-47 and Al-MIL-53 frameworks. Microporous Mesoporous Mater. 181, 175–181 (2013a). https://doi.org/10.1016/j.micromeso.2013.07.030

    Article  CAS  Google Scholar 

  4. S. Biswas, T. Rémy, S. Couck, D. Denysenko, G. Rampelberg, J.F.M. Denayer, D. Volkmer, C. Detavernier, P. Van Der Voort, Partially fluorinated MIL-47 and Al-MIL-53 frameworks: influence of functionalization on sorption and breathing properties. Phys. Chem. Chem. Phys. 15(10), 3552 (2013b). https://doi.org/10.1039/c3cp44204g

    Article  CAS  PubMed  Google Scholar 

  5. J. Canivet, J. Bonnefoy, C. Daniel, A. Legrand, B. Coasne, D. Farrusseng, Structure–property relationships of water adsorption in metal–organic frameworks. N. J. Chem. 38(7), 3102–3111 (2014). https://doi.org/10.1039/C4NJ00076E

    Article  CAS  Google Scholar 

  6. J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130(42), 13850–13851 (2008). https://doi.org/10.1021/ja8057953

    Article  CAS  PubMed  Google Scholar 

  7. J.H. Cavka, C.A. Grande, G. Mondino, R. Blom, High pressure adsorption of CO\(_2\) and CH\(_4\) on Zr-MOFs. Ind. Eng. Chem. Res. 53(40), 15500–15507 (2014). https://doi.org/10.1021/ie500421h

    Article  CAS  Google Scholar 

  8. T.H. Chen, I. Popov, O. Zenasni, O. Daugulis, O.Š. Miljanić, Superhydrophobic perfluorinated metal–organic frameworks. Chem. Commun. 49(61), 6846–6848 (2013). https://doi.org/10.1039/c3cc41564c

    Article  CAS  Google Scholar 

  9. A.M. Cheplakova, I.S. Fedoseev, P.V. Dorovatovskii, V.A. Lazarenko, Y.V. Zubavichus, V.N. Khrustalev, V.P. Fedin, Crystal structure of tris-(2,3,5,6-tetrafluorobenzoato)scandium \([\text{ Sc }(\text{ C}_6\text{ F}_4\text{ HCO}_2)_3]\). J. Struct. Chem. 59(2), 494–496 (2018a). https://doi.org/10.1134/S0022476618020348

    Article  CAS  Google Scholar 

  10. A.M. Cheplakova, K.A. Kovalenko, D.G. Samsonenko, V.A. Lazarenko, V.N. Khrustalev, A.S. Vinogradov, V.M. Karpov, V.E. Platonov, V.P. Fedin, Metal-organic frameworks based on octafluorobiphenyl-4,4\(^{\prime }\)-dicarboxylate: synthesis, crystal structure, and surface functionality. Dalton Trans. 47(10), 3283–3297 (2018b). https://doi.org/10.1039/C7DT04566B

    Article  CAS  PubMed  Google Scholar 

  11. A.M. Cheplakova, K.A. Kovalenko, D.G. Samsonenko, A.S. Vinogradov, V.M. Karpov, V.E. Platonov, V.P. Fedin, Structural diversity of zinc(II) coordination polymers with octafluorobiphenyl-4,4\(^{\prime }\)-dicarboxylate based on mononuclear, paddle wheel and cuboidal units. CrystEngComm 21(15), 2524–2533 (2019). https://doi.org/10.1039/C9CE00073A

    Article  CAS  Google Scholar 

  12. H. Chun, D.N. Dybtsev, H. Kim, K. Kim, Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: implications for hydrogen storage in porous materials. Chem. Eur. J. 11(12), 3521–3529 (2005). https://doi.org/10.1002/chem.200401201

    Article  CAS  PubMed  Google Scholar 

  13. J.B. DeCoste, G.W. Peterson, H. Jasuja, T.G. Glover, Huang Yg, K.S. Walton, Stability and degradation mechanisms of metal–organic frameworks containing the \(\text{ Zr}_6\text{ O}_4\text{(OH) }_4\) secondary building unit. J. Mater. Chem. A 1(18), 5642 (2013). https://doi.org/10.1039/c3ta10662d

    Article  CAS  Google Scholar 

  14. S. Dissegna, K. Epp, W.R. Heinz, G. Kieslich, R.A. Fischer, Defective metal-organic frameworks. Adv. Mater. 30(37), 1704501 (2018). https://doi.org/10.1002/adma.201704501

    Article  CAS  Google Scholar 

  15. V. Guillerm, S. Gross, C. Serre, T. Devic, M. Bauer, G. Férey, A zirconium methacrylate oxocluster as precursor for the low-temperature synthesis of porous zirconium(IV) dicarboxylates. Chem. Commun. 46(5), 767–769 (2010). https://doi.org/10.1039/B914919H

    Article  CAS  Google Scholar 

  16. Y.B. Huang, J. Liang, X.S. Wang, R. Cao, J.R. Li, H.C. Zhou, D.M. Chevrier, P. Zhang, Q. Guo, D. Zang, B. Wu, G. Fu, N. Zheng, X. Chen, J. Ma, S.C.J. Loo, W.D. Wei, Y. Yang, J.T. Hupp, F. Huo, Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions. Chem. Soc. Rev. 46(1), 126–157 (2017a). https://doi.org/10.1039/C6CS00250A

    Article  CAS  PubMed  Google Scholar 

  17. Y.H. Huang, W.S. Lo, Y.W. Kuo, W.J. Chen, C.H. Lin, F.K. Shieh, Green and rapid synthesis of zirconium metal-organic frameworks via mechanochemistry: UiO-66 analog nanocrystals obtained in one hundred seconds. Chem. Commun. 53(43), 5818–5821 (2017b). https://doi.org/10.1039/C7CC03105J

    Article  CAS  Google Scholar 

  18. Z. Hulvey, E. Ayala, J.D. Furman, P.M. Forster, A.K. Cheetham, Structural diversity in coordination polymers composed of divalent transition metals, 2,2\(^{\prime }\)-bipyridine, and perfluorinated dicarboxylates. Cryst. Growth Des. 9(11), 4759–4765 (2009). https://doi.org/10.1021/cg9006058

    Article  CAS  Google Scholar 

  19. P. Ji, T. Drake, A. Murakami, P. Oliveres, J.H. Skone, W. Lin, Tuning Lewis acidity of metal-organic frameworks via perfluorination of bridging ligands: spectroscopic, theoretical, and catalytic studies. J. Am. Chem. Soc. 140(33), 10553–10561 (2018). https://doi.org/10.1021/jacs.8b05765

    Article  CAS  PubMed  Google Scholar 

  20. D. Jiang, A.D. Burrows, K.J. Edler, Size-controlled synthesis of MIL-101(Cr) nanoparticles with enhanced selectivity for \(\text{ CO}_2\) over \(\text{ N}_2\). CrystEngComm 13(23), 6916–6919 (2011). https://doi.org/10.1039/C1CE06274C

    Article  CAS  Google Scholar 

  21. M.J. Katz, Z.J. Brown, Y.J. Colón, P.W. Siu, K.A. Scheidt, R.Q. Snurr, J.T. Hupp, O.K. Farha, A facile synthesis of UiO-66, UiO-67 and their derivatives. Chem. Commun. 49(82), 9449 (2013). https://doi.org/10.1039/c3cc46105j

    Article  CAS  Google Scholar 

  22. Y. Kim, T. Yang, G. Yun, M.B. Ghasemian, J. Koo, E. Lee, S.J. Cho, K. Kim, Hydrolytic transformation of microporous metal-organic frameworks to hierarchical micro- and mesoporous MOFs. Angew. Chem. Int. Ed. 54(45), 13273–13278 (2015). https://doi.org/10.1002/anie.201506391

    Article  CAS  Google Scholar 

  23. N. Ko, J. Hong, S. Sung, K.E. Cordova, H.J. Park, J.K. Yang, J. Kim, A significant enhancement of water vapour uptake at low pressure by amine-functionalization of UiO-67. Dalton Trans. 44(5), 2047–2051 (2015). https://doi.org/10.1039/C4DT02582B

    Article  CAS  PubMed  Google Scholar 

  24. M.F. de Lange, K.J.F.M. Verouden, T.J.H. Vlugt, J. Gascon, F. Kapteijn, Adsorption-driven heat pumps: the potential of metal-organic frameworks. Chem. Rev. 115(22), 12205–12250 (2015). https://doi.org/10.1021/acs.chemrev.5b00059

    Article  CAS  PubMed  Google Scholar 

  25. M.C. Lawrence, C. Schneider, M.J. Katz, Determining the structural stability of UiO-67 with respect to time: a solid-state NMR investigation. Chem. Commun. 52(28), 4971–4974 (2016). https://doi.org/10.1039/C5CC09919F

    Article  CAS  Google Scholar 

  26. K. Leus, T. Bogaerts, J. De Decker, H. Depauw, K. Hendrickx, H. Vrielinck, V. Van Speybroeck, P. Van Der Voort, Systematic study of the chemical and hydrothermal stability of selected stable Metal Organic Frameworks. Microporous Mesoporous Mater. (2016). https://doi.org/10.1016/j.micromeso.2015.11.055

    Article  Google Scholar 

  27. B. Li, Y. Zhang, R. Krishna, K. Yao, Y. Han, Z. Wu, D. Ma, Z. Shi, T. Pham, B. Space, J. Liu, P.K. Thallapally, J. Liu, M. Chrzanowski, S. Ma, Introduction of \(\pi \)-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane. J. Am. Chem. Soc. 136(24), 8654–8660 (2014). https://doi.org/10.1021/ja502119z

    Article  CAS  PubMed  Google Scholar 

  28. H. Li, K. Wang, Y. Sun, C.T. Lollar, J. Li, H.C. Zhou, Recent advances in gas storage and separation using metal-organic frameworks. Mater. Today 21(2), 108–121 (2018a). https://doi.org/10.1016/J.MATTOD.2017.07.006

    Article  CAS  Google Scholar 

  29. J.J. Li, T.T. Fan, X.L. Qu, H.L. Han, X. Li, Temperature-induced 1D lanthanide polymeric frameworks based on \(\text{ Ln}_n\) (n = 2, 2, 4, 6) cores: synthesis, crystal structures and luminescence properties. Dalton Trans. 45(7), 2924–2935 (2016). https://doi.org/10.1039/C5DT04262C

    Article  CAS  PubMed  Google Scholar 

  30. L. Li, R.B. Lin, R. Krishna, H. Li, S. Xiang, H. Wu, J. Li, W. Zhou, B. Chen, Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science (2018b). https://doi.org/10.1126/science.aat0586

    Article  PubMed  PubMed Central  Google Scholar 

  31. R.B.B. Lin, S. Xiang, H. Xing, W. Zhou, B. Chen, Exploration of porous metal-organic frameworks for gas separation and purification. Coord. Chem. Rev. 378, 87–103 (2019)

    Article  CAS  Google Scholar 

  32. J.E. Mondloch, M.J. Katz, N. Planas, D. Semrouni, L. Gagliardi, J.T. Hupp, O.K. Farha, Are \(\text{ Zr}_6\)-based MOFs water stable? Linker hydrolysis vs capillary-force-driven channel collapse. Chem. Commun. 50(64), 8944 (2014). https://doi.org/10.1039/C4CC02401J

    Article  CAS  Google Scholar 

  33. A.L. Myers, J.M. Prausnitz, Thermodynamics of mixed-gas adsorption. AIChE J. 11(1), 121–127 (1965). https://doi.org/10.1002/aic.690110125

    Article  CAS  Google Scholar 

  34. Thermophysical Properties of Fluid Systems, Database of National Institute of Standards and Technology. http://webbook.nist.gov/chemistry/fluid/

  35. P. Nugent, Y. Belmabkhout, S.D. Burd, A.J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi, M.J. Zaworotko, Porous materials with optimal adsorption thermodynamics and kinetics for \(\text{ CO}_2\) separation. Nature 495(7439), 80–84 (2013). https://doi.org/10.1038/nature11893

    Article  CAS  PubMed  Google Scholar 

  36. P. Pachfule, Y. Chen, S.C. Sahoo, J. Jiang, R. Banerjee, Structural isomerism and effect of fluorination on gas adsorption in copper-tetrazolate based metal organic frameworks. Chem. Mater. 23(11), 2908–2916 (2011). https://doi.org/10.1021/cm2004352

    Article  CAS  Google Scholar 

  37. Y.L. Peng, T. Pham, P. Li, T. Wang, Y. Chen, K.J. Chen, K.A. Forrest, B. Space, P. Cheng, M.J. Zaworotko, Z. Zhang, Robust ultramicroporous metal-organic frameworks with benchmark affinity for acetylene. Angew. Chem. Int. Ed. 57(34), 10971–10975 (2018). https://doi.org/10.1002/anie.201806732

    Article  CAS  Google Scholar 

  38. V.G. Ponomareva, K.A. Kovalenko, A.P. Chupakhin, D.N. Dybtsev, E.S. Shutova, V.P. Fedin, Imparting high proton conductivity to a metal-organic framework material by controlled acid impregnation. J. Am. Chem. Soc. 134(38), 15640–15643 (2012). https://doi.org/10.1021/ja305587n

    Article  CAS  PubMed  Google Scholar 

  39. X. Qian, B. Yadian, R. Wu, Y. Long, K. Zhou, B. Zhu, Y. Huang, Structure stability of metal-organic framework MIL-53 (Al) in aqueous solutions. Int. J. Hydrog. Energy 38(36), 16710–16715 (2013). https://doi.org/10.1016/j.ijhydene.2013.07.054

    Article  CAS  Google Scholar 

  40. A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz, M. Wiebcke, P. Behrens, Modulated synthesis of Zr-based metal-organic frameworks: from nano to single crystals. Chem. Eur. J. 17(24), 6643–6651 (2011). https://doi.org/10.1002/chem.201003211

    Article  CAS  PubMed  Google Scholar 

  41. G.C. Shearer, S. Chavan, S. Bordiga, S. Svelle, U. Olsbye, K.P. Lillerud, Defect engineering: tuning the porosity and composition of the metal-organic framework UiO-66 via modulated synthesis. Chem. Mater. 28(11), 3749–3761 (2016). https://doi.org/10.1021/acs.chemmater.6b00602

    Article  CAS  Google Scholar 

  42. K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.H. Bae, J.R. Long, Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 112(2), 724–781 (2012). https://doi.org/10.1021/cr2003272

    Article  CAS  PubMed  Google Scholar 

  43. B. Wang, H. Huang, X.L. Lv, Y. Xie, M. Li, J.R. Li, Tuning \(\text{ CO}_2\) selective adsorption over \(\text{ N}_2\) and \(\text{ CH}_4\) in UiO-67 analogues through ligand functionalization. Inorg. Chem. 53(17), 9254–9259 (2014). https://doi.org/10.1021/ic5013473

    Article  CAS  PubMed  Google Scholar 

  44. S. Wang, T. Kitao, N. Guillou, M. Wahiduzzaman, C. Martineau-Corcos, F. Nouar, A. Tissot, L. Binet, N. Ramsahye, S. Devautour-Vinot, S. Kitagawa, S. Seki, Y. Tsutsui, V. Briois, N. Steunou, G. Maurin, T. Uemura, C. Serre, A phase transformable ultrastable titanium-carboxylate framework for photoconduction. Nat. Commun. 9(1), 1660 (2018). https://doi.org/10.1038/s41467-018-04034-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. X. Wang, L. Li, Y. Wang, J.R. Li, J. Li, Exploiting the pore size and functionalization effects in UiO topology structures for the separation of light hydrocarbons. CrystEngComm 19(13), 1729–1737 (2017). https://doi.org/10.1039/C7CE00187H

    Article  CAS  Google Scholar 

  46. C. Yang, X. Wang, M.A. Omary, Fluorous metal-organic frameworks for high-density gas adsorption. J. Am. Chem. Soc. 129(50), 15454–15455 (2007). https://doi.org/10.1021/ja0775265

    Article  CAS  PubMed  Google Scholar 

  47. P. Yang, F. Mao, Y. Li, Q. Zhuang, J. Gu, Hierarchical porous Zr-based MOFs synthesized by a facile monocarboxylic acid etching strategy. Chem. Eur. J. 24(12), 2962–2970 (2018). https://doi.org/10.1002/chem.201705020

    Article  CAS  PubMed  Google Scholar 

  48. D.S. Zhang, Z. Chang, Y.F. Li, Z.Y. Jiang, Z.H. Xuan, Y.H. Zhang, J.R. Li, Q. Chen, T.L. Hu, X.H. Bu, Fluorous metal-organic frameworks with enhanced stability and high \(\text{ H}_2/\text{CO}_2\) storage capacities. Sci. Rep. 3(1), 3312 (2013). https://doi.org/10.1038/srep03312

    Article  PubMed  PubMed Central  Google Scholar 

  49. Y. Zhang, H. Xiao, X. Zhou, X. Wang, Z. Li, Selective adsorption performances of UiO-67 for separation of light hydrocarbons C\(_{1},\) C\(_{2},\) and C\(_{3}\). Ind. Eng. Chem. Res. 56(30), 8689–8696 (2017). https://doi.org/10.1021/acs.iecr.7b01420

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Multi-Access Chemical Research Center SB RAS for spectral and analytical measurements. This work was supported by Russian Foundation for Basic Research and the Government of Novosibirsk Region of the Russian Federation (Grant No. 18-43-543028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Konstantin A. Kovalenko or Vladimir P. Fedin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2605 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheplakova, A.M., Kovalenko, K.A., Vinogradov, A.S. et al. A comparative study of perfluorinated and non-fluorinated UiO-67 in gas adsorption. J Porous Mater 27, 1773–1782 (2020). https://doi.org/10.1007/s10934-020-00941-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-020-00941-w

Keywords

Navigation