Advertisement

Role of the type of grafting solvent and its removal process on APTES functionalization onto SBA-15 silica for CO2 adsorption

  • Jéssica de O. N. RibeiroEmail author
  • Eduardo H. M. Nunes
  • Daniela C. L. Vasconcelos
  • Wander L. Vasconcelos
  • Jailton F. Nascimento
  • Wilson M. Grava
  • Peter W. J. Derks
Article
  • 32 Downloads

Abstract

In this work, silica-based CO2 adsorbents were successfully prepared by the sol–gel method. These materials were chemically modified with 3-aminopropyltriethoxysilane (APTES) using the grafting technique. Two synthesis parameters were investigated in this study, namely the solvent used in the grafting step (toluene against ethanol) and the process employed for removing the solvent (filtration against evaporation). The influence of these parameters on pore structure, surface chemistry and CO2 capture performance were evaluated and discussed on the basis of a series of experimental tests, including FTIR, TG-MS, nitrogen adsorption tests, XRD, TEM and CO2 adsorption. The use of ethanol led to samples with a NH2 concentration of about 1.20 ± 0.05 mmol g−1. On the other hand, samples obtained using toluene showed amine concentrations two times higher than the specimens prepared with ethanol. Samples obtained by evaporation exhibited blocked pores and a low CO2 adsorption capacity when compared to those obtained by filtration. The sample prepared using toluene as the solvent and a filtration step displayed a CO2 adsorption capacity as high as 6.3 wt% at 30 °C and 1 bar.

Keywords

SBA-15 APTES CO2 adsorption Grafting 

Notes

Acknowledgements

The authors thank the financial support from Petrobras, Equinor, and ANP (National Agency of Petroleum, Natural Gas and Biofuel). We also thank the technical support of UFMG Microscopy Center in the TEM tests.

References

  1. 1.
    Massachussets Institute of Technology, The Future of Natural Gas: An Interdisciplinary MIT Study (Massachussets Institute of Technology, Cambridge, 2011)Google Scholar
  2. 2.
    X. Liu, L. Zhou, X. Fu, Y. Sun, W. Su, Y. Zhou, Chem. Eng. Sci. 62, 1101 (2007)CrossRefGoogle Scholar
  3. 3.
    R. Kishor, A.K. Ghoshal, Chem. Eng. J. 262, 882 (2015)CrossRefGoogle Scholar
  4. 4.
    Y. Belmabkhout, R. Serna-guerrero, A. Sayari, Adsorpt. J. Int. Adsorpt. Soc. 49, 359 (2010)Google Scholar
  5. 5.
    Y. Belmabkhout, G. De Weireld, A. Sayari, Langmuir 25, 13275 (2009)CrossRefGoogle Scholar
  6. 6.
    Y.G. Ko, S.S. Shin, U.S. Choi, J. Colloid Interface Sci. 361, 594 (2011)CrossRefGoogle Scholar
  7. 7.
    J. Wei, J. Shi, H. Pan, W. Zhao, Q. Ye, Y. Shi, Microporous Mesoporous Mater. 116, 394 (2008)CrossRefGoogle Scholar
  8. 8.
    L. Mafra, T. Čendak, S. Schneider, P.V. Wiper, J. Pires, J.R.B. Gomes, M.L. Pinto, Chem. Eng. J. 336, 612 (2018)CrossRefGoogle Scholar
  9. 9.
    C.-H. Yu, C.-H. Huang, C.-S. Tan, Aerosol Air. Qual. Res. 12, 745 (2012)Google Scholar
  10. 10.
    E.F. Vansant, P.V. Voort, K.C. Vrancken (eds.), Characterization and chemical modification of the silica surface (Elsevier, Amsterdam, 1995), pp. 193–297Google Scholar
  11. 11.
    A.C.C. Chang, S.S.C. Chuang, M. Gray, Y. Soong, Energy Fuels 17, 468–473 (2003)CrossRefGoogle Scholar
  12. 12.
    A. Simon, T. Cohen-Bouhacina, M.C. Port, J.P. Aim, J. Colloid Interface Sci. 283, 278 (2002)CrossRefGoogle Scholar
  13. 13.
    P. Shah, N. Sridevi, A. Prabhune, V. Ramaswamy, Microporous Mesoporous Mater. 116, 157 (2008)CrossRefGoogle Scholar
  14. 14.
    M. Chaimberg, Y. Cohen, J. Colloid Interface Sci. 134, 576 (1990)CrossRefGoogle Scholar
  15. 15.
    F. Cuoq, A. Masion, J. Labille, J. Rose, F. Ziarelli, B. Prelot, J. Bottero, Appl. Surf. Sci. 266, 155 (2013)CrossRefGoogle Scholar
  16. 16.
    W.J.D. Ng, Z. Zhong, J. Luo, A. Borgna, Int. J. Hydrogen Energy 35, 12724 (2010)CrossRefGoogle Scholar
  17. 17.
    H. He, J. Duchet, J. Galy, J. Gerard, J. Colloid Interface Sci. 288, 171 (2005)CrossRefGoogle Scholar
  18. 18.
    A. Krysztafkiewicz, T. Jesionowski, S. Binkowski, Colloids Surfaces A Physicochem. Eng. Asp. 173, 73 (2000)CrossRefGoogle Scholar
  19. 19.
    Z. Bahrami, A. Badiei, F. Atyabi, Chem. Eng. Res. Des. 2, 1296 (2013)Google Scholar
  20. 20.
    M. Moritz, M. Łaniecki, Appl. Surf. Sci. 258, 7523 (2012)CrossRefGoogle Scholar
  21. 21.
    V. Hernández-Morales, R. Nava, Y.J. Acosta-Silva, S.A. MacÍas-Sánchez, J.J. Pérez-Bueno, B. Pawelec, Microporous Mesoporous Mater. 160, 133 (2012)CrossRefGoogle Scholar
  22. 22.
    A.Z. Abdullah, N.S. Sulaiman, A.H. Kamaruddin, Biochem. Eng. J. 44, 263 (2009)CrossRefGoogle Scholar
  23. 23.
    P.T.B. Nguyen, J. Lee, W.G. Shim, H. Moon, Microporous Mesoporous Mater. 110, 560 (2008)CrossRefGoogle Scholar
  24. 24.
    S. Shylesh, A.P. Singh, J. Catal. 244, 52 (2006)CrossRefGoogle Scholar
  25. 25.
    Q. Xue, Y. Liu, J. Ind. Eng. Chem. 18, 169 (2012)CrossRefGoogle Scholar
  26. 26.
    X. Zhang, H. Qin, X. Zheng, W. Wu, Mater. Res. Bull. 48, 3981 (2013)CrossRefGoogle Scholar
  27. 27.
    B.M. Yue, B.L. Sun, Z.J. Wang, Y. Wang, Q. Yu, J.H. Zhu, Microporous Mesoporous Mater. 114, 74 (2008)CrossRefGoogle Scholar
  28. 28.
    A. Zhao, A. Samanta, P. Sarkar, R. Gupta, Ind. Eng. Chem. Res. 52, 6480 (2013)CrossRefGoogle Scholar
  29. 29.
    J. Kim, R.J. Desch, S.W. Thiel, V.V. Guliants, N.G. Pinto, J. Chromatogr. A 1218, 7796 (2011)CrossRefGoogle Scholar
  30. 30.
    V. Meynen, P. Cool, E.F. Vansant, Microporous Mesoporous Mater. 125, 170 (2009)CrossRefGoogle Scholar
  31. 31.
    H.M. Alsyouri, M.A. Abu-Daabes, A. Alassali, J.Y. Lin, Nanoscale Res. Lett. 8, 484 (2013)CrossRefGoogle Scholar
  32. 32.
    P.F. Fulvio, S. Pikus, M. Jaroniec, J. Mater. Chem. 15, 5049 (2005)CrossRefGoogle Scholar
  33. 33.
    Y. Liu, T.J. Pinnavaia, J. Mater. Chem. 12, 3179 (2002)CrossRefGoogle Scholar
  34. 34.
    A. Galarneau, H. Cambon, F. Di Renzo, R. Ryoo, M. Choi, F. Fajula, New J. Chem. 27, 73 (2002)CrossRefGoogle Scholar
  35. 35.
    K. Cassiers, T. Linssen, M. Mathieu, M. Benjelloun, K. Schrijnemakers, P. Van Der Voort, P. Cool, E.F. Vansant, Chem. Mater. 14, 2317 (2002)CrossRefGoogle Scholar
  36. 36.
    C.P. Tripp, M.L. Hair, Langmuir 7, 923 (1991)CrossRefGoogle Scholar
  37. 37.
    J. Román, S. Padilla, M. Vallet-Regí, Chem. Mater. 15, 798 (2003)CrossRefGoogle Scholar
  38. 38.
    B.C. Smith, Infrared Spectral Interpretation: A Systematic Approach (CRC Press, New York, 1998)Google Scholar
  39. 39.
    A. del Campo, T. Sen, J.-P. Lellouche, I.J. Bruce, J. Magn. Magn. Mater. 293, 33 (2005)CrossRefGoogle Scholar
  40. 40.
    S. Xie, M. Gan, L. Ma, Z. Li, J. Yan, H. Yin, X. Shen, F. Xu, J. Zheng, J. Zhang, J. Hu, Electrochim. Acta 120, 408 (2014)CrossRefGoogle Scholar
  41. 41.
    R.M. Almeida, C.G. Pantano, J. Appl. Phys. 68, 4225 (1990)CrossRefGoogle Scholar
  42. 42.
    V. Zelenak, D. Halamova, L. Gaberova, E. Bloch, P.L. Llewellyn, Microporous Mesoporous Mater. 116, 358 (2008)CrossRefGoogle Scholar
  43. 43.
    L. Wang, L. Ma, A. Wang, Q. Liu, T. Zhang, Chinese. J. Catal. 28, 805 (2007)Google Scholar
  44. 44.
    F.Y. Chang, K.J. Chao, H.H. Cheng, C.S. Tan, Sep. Purif. Technol. 70, 87 (2009)CrossRefGoogle Scholar
  45. 45.
    E. Da’na, A. Sayari, Chem. Eng. J. 166, 445 (2011)CrossRefGoogle Scholar
  46. 46.
    J.M. Rosenholm, M. Lindén, Chem. Mater. 19, 5023 (2007)CrossRefGoogle Scholar
  47. 47.
    V. Zelenák, M. Badanicová, D. Halamová, J. Cejka, A. Zukal, N. Murafa, G. Goerigk, Chem. Eng. J. 144, 336 (2008)CrossRefGoogle Scholar
  48. 48.
    S. Saravanamurugan, D. Han, J. Koo, S. Park, Catal. Commun. 9, 158 (2008)CrossRefGoogle Scholar
  49. 49.
    Y. Li, N. Sun, L. Li, N. Zhao, F. Xiao, W. Wei, Y. Sun, W. Huang, Materials (Basel). 6, 981 (2013)CrossRefGoogle Scholar
  50. 50.
    S.A. Didas, M.A. Sakwa-novak, G.S. Foo, C. Sievers, C.W. Jones, J. Phys. Chem. Lett. Scheme 5, 4194–4200 (2014)CrossRefGoogle Scholar
  51. 51.
    M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87, 1051 (2015)CrossRefGoogle Scholar
  52. 52.
    J. Liu, R. Lin, Powder Technol. 241, 188 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jéssica de O. N. Ribeiro
    • 1
    Email author
  • Eduardo H. M. Nunes
    • 1
  • Daniela C. L. Vasconcelos
    • 1
  • Wander L. Vasconcelos
    • 1
  • Jailton F. Nascimento
    • 2
  • Wilson M. Grava
    • 2
  • Peter W. J. Derks
    • 3
  1. 1.Universidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.PetrobrasRio de JaneiroBrazil
  3. 3.EquinorRio de JaneiroBrazil

Personalised recommendations